Influence of network dynamics on evolutionary rates of domains within proteins

Brian K. Mannakee¹ & Ryan N. Gutenkunst²

Summary
Each protein has a characteristic rate of evolution, and these rates vary dramatically. Studies of protein evolutionary rate typically take a very coarse view of protein function. Here we take a much finer view, using detailed mechanistic models to measure the influence of each constituent protein on its network’s dynamics.

We show that a protein’s dynamical influence and its evolutionary rate are negatively correlated, implying purifying selection on network dynamics. Moreover, this correlation is independent of and stronger than the correlation between evolutionary rate and knock-out essentiality, the most common measure of protein functional importance. We have begun to further refine this analysis by measuring evolutionary rate at the protein domain level.

Dynamical influence

\[\chi^2(k) \propto \sum_{y} \frac{1}{\sigma_y} \left(\frac{y(t_k) - y(t_{k+1})}{\sigma_y} \right)^2 dt. \]

The dynamical influence \(\kappa_i \) of parameter \(k_i \) is

\[\kappa_i = \sqrt{\frac{\partial^2 \chi^2}{\partial k_i^2}}, \]

The dynamical influence \(D \) of a protein is the mean influence of parameters governing reactions the uncomplexed protein participates in:

\[D = \langle \kappa_i \rangle_{\text{geom}}. \]

For example, in the network shown in Figure 1, the influence of protein A incorporates the highlighted reactions.

Evolutionary rate

Maximum-likelihood estimates of the rate of nonsynonymous to synonymous substitution (dN/dS) were inferred with PAML, using alignments and sequences from Homologene and GenBank. The species tree used is shown in Figure 2.

Data

![Image: Correlation in real biochemical networks](image)

We tested all models in the BioModels database possessing 8 or more species annotated with UniProt identifiers. Results are shown in Figure 3. For 10 out of 12 models we see a negative correlation between evolutionary rate dN/dS and dynamical influence \(D \). Individual \(p \)-values (from one-sided permutation tests) are not dramatic, but the probability that 10 of 12 systems would show a negative correlation by chance is less than 4%. As shown in Figure 4 below, we have analyzed four of these models at the protein domain level and find that the correlation between dynamical influence and evolutionary rate increases. Additionally, we find evidence suggesting that catalytic domains and protein-protein interaction domains may be subject to different selective constraints and evolve in different ways.

Protein structure

Proteins are organized into domains which comprise separate functional units, as we see in Figure 5. In many cases there are several domains serving both catalytic and protein binding functions. In our analysis presented in Figure 3 we average all of the reactions in which the protein takes part to calculate its dynamical influence, and we use the evolutionary rate for the entire protein. This averaging causes us to lose information and gives us an opportunity to further refine our analysis. Presently, we are combining bioinformatics with extensive biochemical literature review to identify the domains in each protein and attach each reaction in a biological model to the domain at which it occurs. We have developed a Python package called DynEvol which allows us to curate and analyze this data.

Correlation with essentiality and expression

Figure 3 demonstrates that dynamical influence \(D \) shows no correlation with knock-out essentiality \(E \). It is thus an independent (and stronger) functional correlate of evolutionary rate.

Like many factors, dynamical influence is positively correlated with expression level. Tests of the partial correlations between dynamical influence and evolutionary rate, controlling for expression level, suggest that dynamical influence exerts an independent effect.

¹ Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA. E-mail: kmannake@email.arizona.edu

² Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA. E-mail: ryan.gutenkunst@email.arizona.edu