Computationally Efficient Composite Likelihood Statistics for Demographic Inference

Alec J. Coffman,1 Ping Hsun Hsieh,2 Simon Gravel,3 and Ryan N. Gutenkunst*1
1Department of Molecular and Cellular Biology, University of Arizona
2Department of Ecology and Evolutionary Biology, University of Arizona
3Department of Human Genetics and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada

*Corresponding author: E-mail: rgutenk@email.arizona.edu.
Associate editor: Rasmus Nielsen

Abstract

Many population genetics tools employ composite likelihoods, because fully modeling genomic linkage is challenging. But traditional approaches to estimating parameter uncertainties and performing model selection require full likelihoods, so these tools have relied on computationally expensive maximum-likelihood estimation (MLE) on bootstrapped data. Here, we demonstrate that statistical theory can be applied to adjust composite likelihoods and perform robust computationally efficient statistical inference in two demographic inference tools: *daa*ï and TRACTS. On both simulated and real data, the adjustments perform comparably to MLE bootstrapping while using orders of magnitude less computational time.

Key words: composite likelihood, demographic inference, parameter uncertainties, likelihood ratio test.

Many population genetic inference tools use composite likelihoods to estimate model parameters and choose between models (e.g., Gutenkunst et al. 2009; Gravel 2012; Excoffier et al. 2013; Harris and Nielsen 2013; Robinson et al. 2014; Fearnhead et al. 2015). Composite likelihoods approximate the full likelihood by a product of simpler likelihoods that are treated as if they were independent (Lindsay 1988; Varin et al. 2011). With full likelihoods, confidence intervals can be estimated from the Fisher Information Matrix (FIM), and model selection can be done using the likelihood ratio test (LRT), Akaike’s information criterion, or the Bayesian information criterion. But when applied to composite likelihoods these approaches underestimate parameter uncertainties and erroneously favor more complex models (Gao and Song 2010). These biases can be avoided by performing maximum-likelihood estimation (MLE) on many bootstrap data sets (Horowitz 2001), but at substantial computational cost. Statistical theory shows that one can compensate for the model misspecification inherent to composite likelihoods (Pace et al. 2011), and this theory has found some previous application in population genetics (RoyChoudhury 2011; Fearnhead et al. 2015). The FIM can be replaced with the Godambe Information Matrix (GIM; supplementary eq. S1, Supplementary Material online; Godambe 1960), and the LRT can be adjusted by normalizing the difference in log-likelihoods (supplementary eq. S2, Supplementary Material online; Rotnitzky and Jewell 1990). Here we apply composite likelihood statistical approaches to two popular demographic history inference tools, *daa*ï (Gutenkunst et al. 2009) and TRACTS (Gravel 2012). We show that these approaches yield accurate uncertainty quantification and model selection, using orders of magnitude less computation than MLE on bootstrapped data.
In the LRT, the difference in log-likelihoods between a more complex full model and a simpler nested model is compared with a null χ^2 distribution. For two-population data simulated with symmetric population sizes and fit with an asymmetric size model, the distribution of log-likelihood differences was broader than expected (fig. 1F), leading the traditional test to erroneously favor the model with asymmetric sizes (fig. 1G). Using first-order moment matching, however, restored the expected distribution of log-likelihood differences (fig. 1F and supplementary text, Supplementary Material online), resulting in a well-controlled Type 1 error rate (fig. 1G). If the simpler model lies on the boundary of parameter space, such as comparing models with and without migration, the null distribution is more complex (supplementary materials and methods, Supplementary Material online), yet moment-matching still yielded a well-controlled error rate (fig. 1H). In many population genetics contexts, there is a degeneracy in the parameter space mapping the more complex to the simpler model. For example, a model of instantaneous growth can be reduced to the standard neutral model by setting either the magnitude or the time of the growth to zero. In this case, to achieve proper Type I error rates we calculated derivatives for moment-matching with time equal to zero and size change equal to 1 (fig. 1L). The Wald and score tests are alternatives to the LRT that can be also be adjusted for composite likelihood (Pace et al. 2011; RoyChoudhury 2011), although we find in our applications that they perform less well (supplementary fig. S5, Supplementary Material online).

To demonstrate the broad applicability of these statistical approaches, we also considered TRACTS (Gravel 2012), which models the distribution of ancestry tract lengths to infer recent gene flow. TRACTS calculates a composite likelihood, because it assumes a Poisson number of tracts in each length interval. As with $\hat{\alpha}$, on simulated data the FIM underestimated parameter uncertainties, but the

![Fig. 1](http://mbe.oxfordjournals.org/)

Fig. 1. Adjusted composite-likelihood statistics compared with MLE on bootstrapped data and assuming full likelihood. Throughout, results in gray are from MLE on bootstrapped data, in blue are from composite likelihood (GIM), and in red are from assuming full likelihood (FIM). The full likelihood assumption is incorrect when data are linked ($\mu/r \neq 0$). (A, B) Inferred $\hat{\alpha}$ parameter standard deviations for data simulated with an instantaneous population size change η at a time T in the past. To vary the strength of linkage, the mutation rate μ was held constant while the recombination rate r was varied. Plotted are averages over 100 data sets per value of μ/r. (C, D) Coverage of 95% confidence intervals for model and simulations in (A) and (B). (E) Parameter standard deviations from Godambe and Fisher Information Matrices compared with conventional bootstrapping for the data and 13-parameter $\hat{\alpha}$ model of Gutenkunst et al. (2009). (F) For 100 symmetric migration data sets simulated with linkage, log-likelihood differences (ΔLL) between asymmetric and symmetric migration $\hat{\alpha}$ models, before (red) and after adjustment (blue) compared with expected χ^2 null distribution (black line). (G) Type I error rate versus significance level α for LRT on simulations and models in F, using adjusted (blue) and nonadjusted (red) ΔLLs. (H) Type I error rate versus significance level α for LRT between $\hat{\alpha}$ models of isolation with and without migration. (I) Type I error rate versus significance level α for LRT between instantaneous growth and standard neutral $\hat{\alpha}$ models. (J, K) Standard deviations for parameters inferred by TRACTS for a model in which Europeans and African-Americans admixed T generations ago with admixture proportion ν and $1 - \nu$.

Coffman et al. · doi:10.1093/molbev/msv255

MBE
GIM agreed well with MLE on bootstrap data sets (fig. 1J and K).

The GIM and LRT adjustment depend on the expectations of derivatives of the composite likelihood function with respect to parameters, where the expectations are over realizations of the stochastic process that generates the data (supplementary eqs. S1 and S2, Supplementary Material online). Expectations of second derivatives can be approximated by the observed values (Efron and Hinkley 1978). The observed first derivatives, however, are zero at the MLE. We approximated their expectations over the stochastic process using a conventional bootstrap (supplementary eq. S3, Supplementary Material online; Catelan and Sartori 2015). In Đađi and TRACTS, this bootstrapping of first-derivative calculations can be done extremely efficiently, because calculation of the likelihood decomposes into an expensive calculation of the expected spectrum of allele frequencies or tract lengths, which is only dependent on the parameter values, and an inexpensive Poisson calculation of the likelihood, which is dependent on the data. Reusing evaluations of the expected spectra thus enables fast computation. For example, MLE for all the bootstrap data for figure 1E took hundreds of CPU hours, but evaluating the GIM took only 1 CPU hour. Similar decompositions of the likelihood calculation occur in other population-genetic inference applications (e.g., Harris and Nielsen 2013; Kamm et al. 2015). Moreover, because likelihood calculation is deterministic in Đađi and TRACTS, derivatives can be accurately approximated by finite differences. For analytical methods, automatic differentiation may more efficient and accurate (e.g., Bhaskar et al. 2015), but accurate derivative calculation may be challenging in methods that rely on stochastic simulation to estimate likelihoods (e.g., Excoffier et al. 2013; Mathew et al. 2013).

The methods described are implemented in Đađi version 1.7.0, available at https://bitbucket.org/GutenkunstLab/dadi (last accessed November 23, 2015).

Supplementary Material

Supplementary text, materials and methods, equations S1–S5, and figures S1–S5 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

This work was supported by National Science Foundation grant DEB-1146074 to R.N.G. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program and the Canadian Institutes of Health Research MOP-134855 (to S.G.).

References

