Model Equations

<i>d</i> [cp]_	vmax1 [bc][glu][atp]	vmax2 [cp][asp]	d[cn]
dt –	$\left(1+\frac{[utp]}{Kutp}\right)\left(K_{atp}+[atp]\right)\left(K_{bc}+[bc]\right)\left(K_{q}+[glu]\right)$	$\frac{1}{(1+\frac{[utp]}{Kutp})(K_{m2}+[cp])(K_{asp}+[asp])} -$	սլշբյ
<u>d[ca]</u>	vmax2 [cp][asp] vmax	ax3 [ca] = d[ca]	
dt –	$\left(1+\frac{[utp]}{Kutp}\right)(K_{m2}+[cp])(K_{asp}+[asp])^{-K_{m3}}$	$_3+[ca] = u[ca]$	
d[dho]	vmax3 [ca] vmax4 [dho]		
dt	$\frac{-K_{m3}+[ca]}{K_{m4}+[dho]} - d[uno]$		
d[oro]	$\frac{\text{vmax4} [\text{dho}]}{\text{max5} [\text{oro}][\text{prpp}]} = d[\text{ord}]$	col	
dt	K_{m4} + [dho] K_{m5} + [oro][prpp] $- u[010]$	0J	
$\frac{d[\text{omp}]}{d[\text{omp}]} = \frac{\text{vmax5}[\text{oro}][\text{prpp}]}{d[\text{omp}]} = \frac{\text{vmax6}[\text{omp}]}{d[\text{omp}]}$			
$\frac{dt}{dt} = \frac{1}{K_{m5} + [oro][prpp]} = \frac{1}{K_{m6} + [omp]} = u[omp]$			
d[ump] = vmax6[omp] = vmax10[ump]			
$\frac{dt}{dt} = \frac{1}{K_{m6} + [omp]} = \frac{1}{K_{m10} + [ump]} = u[ump]$			
d[udp] vmax10 [ump] vmax7 [udp] d[udp]			
$\frac{dt}{dt} = \frac{1}{K_{m10} + [ump]} - \frac{1}{K_{m7} + [udp]} - \frac{1}{K_{m7} + [udp]}$			
d[utp]	vmax7 [udp] vmax8 [utp] g _{pyr} [utp]	ما []	
$\frac{dt}{dt}$	$= \frac{1}{K_{m7} + [udp]} - \frac{1}{K_{m8} + [utp]} - \frac{1}{K_{Mp} + [utp]}$		
d[ctp]	$\frac{vmax8 [utp]}{g_{pyr} [ctp]} = \frac{d[ctn]}{d[ctn]}$		
dt	$\frac{1}{K_{m8} + [utp]} = \frac{1}{K_{Mp} + [ctp]} = u[ctp]$		

Supplemental Figure 1. Lineage-specific dN/dS estimates for the local URA1 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 2 Lineage-specific dN/dS estimates for the local URA2 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 3. Lineage-specific dN/dS estimates for the local URA3 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 4. Lineage-specific dN/dS estimates for the local URA4 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 5. Lineage-specific dN/dS estimates for the local URA5 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 6. Lineage-specific dN/dS estimates for the local URA10 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 7. Lineage-specific dN/dS estimates for the local URA6 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 8. Lineage-specific dN/dS estimates for the local URA7 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 9. Lineage-specific dN/dS estimates for the local YNK1 tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 10. Lineage-specific dN/dS estimates for the local ATCase tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 11. Lineage-specific dN/dS estimates for the local CPSase tree around *Saccharomyces cerevisiae*. Numbers in bold are the dN/dS values for the given branch.

Supplemental Figure 12. Phylogeny of the URA1 gene family. **A.** Complete phylogeny of URA1 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA1 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 13. Phylogeny of the URA2 gene family. **A.** Complete phylogeny of URA2 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA2 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 14. Phylogeny of the URA3 gene family. **A.** Complete phylogeny of URA3 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA3 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 15. Phylogeny of the URA4 gene family. **A.** Complete phylogeny of URA4 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA4 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 16. Phylogeny of the URA5 gene family. **A.** Complete phylogeny of URA5 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA5 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 17. Phylogeny of the URA10 gene family. **A.** Complete phylogeny of URA10 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA10 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 18. Phylogeny of the URA6 gene family. **A.** Complete phylogeny of the URA6 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA6 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 19. Phylogeny of the URA7 gene family. **A.** Complete phylogeny of the URA7 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the URA7 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 20. Phylogeny of the YNK1 gene family. **A.** Complete phylogeny of the YNK1 gene family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the YNK1 gene family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 21. Phylogeny of the ATCase domain of the URA2 gene family . **A.** Complete phylogeny of the ATCase domain family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the ATCase domain family. Subtree used in the dN/dS analysis is marked in gray.

Supplemental Figure 22. Phylogeny of the CPSase domain of the URA2 gene family . **A.** Complete phylogeny of the CPSase domain family. Taxa used in dN/dS analysis are colored in dark gray. **B.** Collapsed version of the CPSase domain family. Subtree used in the dN/dS analysis is marked in gray.