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Abstract When modeling complex biological systems, exploring parameter space
is critical, because parameter values are typically poorly known a priori. This explo-
ration can be challenging, because parameter space often has high dimension and
complex structure. Recent work, however, has revealed universal structure in para-
meter space of models for nonlinear systems. In particular, models are often sloppy,
with strong parameter correlations and an exponential range of parameter sensi-
tivities. Here we review the evidence for universal sloppiness and its implications
for parameter fitting, model prediction, and experimental design. In principle, one
can transform parameters to alleviate sloppiness, but a parameterization-independent
information geometry perspective reveals deeper universal structure. We thus also
review the recent insights offered by information geometry, particularly in regard to
sloppiness and numerical methods.
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11.1 Introduction

Mathematical models of cell-signaling, metabolic, and gene networks play a criti-
cal role in developing mechanistic understanding of these networks [45]. Building
models can be difficult, however, because such networks often have complex non-
linear dynamics and not all components may be known. In fact, important uses of
network models are to infer network structure [19] or choose between hypotheses
regarding network function [43]. (For more on the challenges in reverse engineering
biological networks, see Chap.2 in this volume [42].) Even when the network is
well-known, however, modeling can still be difficult, because mechanistic models
typically depend upon a large number of kinetic parameters [29, 52]. Such parameters
are often unknown and are difficult to measure experimentally.

In this chapter, we review methods for exploring the spaces of model parameters
and data, and we review recent work on sloppiness, a general property of complex
nonlinear models. Sloppymodels have highly anisotropic parameter and data spaces,
with complex relationships between parameter values and model output. Sloppiness
results in several difficulties for modelers, including that numerical tools used to
estimate parameters can be slow, confidence intervals for parameter values andmodel
output can be large, and experiments to improve the model can be difficult to design.
We review recent work on how these challenges arise and how they can be overcome.

11.1.1 Parameter Space and Data Space

In amodelwith N parameters θ1, . . . , θN , the parameter space encompasses the set of
all possible values for each parameter. Most commonly, parameters are real numbers,
in which case the N-dimensional parameter space is a subspace of RN . A particular
realization of parameter values θ = [θ1, θ2, . . . , θN ] is a vector representing a single
point in parameter space. For biological models, in which parameters may have
different units and scales that differ by orders of magnitude, it is convenient to
consider logarithmic rather than absolute parameter values, so in this chapterwhenwe
speak of parameters and parameter space we are always referring to log-parameters.
One can think of the model as a function mapping points or regions in parameter
space to output values, or points in data space [18], and a general problem in systems
biology is to understand this mapping.

A complete description of this map is a useful mathematical tool. For instance,
once themapping is understood, it is easy to enumerate the possible outcomes amodel
can generate. Thus, given a model that matches experimental data, one can generate
hypotheses about other states the system might enter and perform experiments to
look for those states [61]. Additionally, estimating parameter values by fitting them
to data [40] employs the reverse map, in that the modeler seeks the point or region
in parameter space that maps to the point in data space closest to the measured data.
These maps are commonly constructed and analyzed using a cost function.

http://dx.doi.org/10.1007/978-3-319-21296-8_2
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11.1.2 Cost Functions

In the context of fitting models to data, the cost function measures the difference
between the model output for a given set of parameters and the data that is being
fit. As such, the cost function acts as a map between parameter space and data
space, structuring the parameter space in such a way that moves in parameter space
correspond to changes in model fit. This structure is often called the cost landscape,
and we will use these concepts, of maps and landscapes, interchangeably here. The
most common cost function used in data fitting, and the one we will focus on in
this chapter, is the least-squares cost function [62]. (For more on cost functions, see
Chap.7 in this volume [60]). Given amodel y(θ, t)with parameter vector θ we define
the least-squares cost function as

C(θ) ≡ 1

2

∑

s

∑

c

∑

Tc

[
ys,c(θ, t) − Ys,c(t)

σs,c,t

]2

= 1

2

∑

s

∑

c

∑

Tc

r2s,c,t (θ) = 1

2

M∑

m=1

r2m(θ) , (11.1)

which is half the squared difference over M data points collected for species s under
experimental conditions c at timepoints Tc, or the sumof squares of the M normalized
residuals r between model and data. Measurement uncertainty for each data point
is denoted σs,c,t . The sum over Tc can be replaced with an integral when fitting
continuous data. The best-fit parameter vector θ∗ occurs at the global minimum
of C .

Most commonly, the model residuals are assumed to be independent and nor-
mally distributed. The probability density that the model will produce the data given
parameters θ is then
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In statistics, this probability density is called the likelihood of θ [12]. Taking the
negative logarithm of the likelihood function yields the least-squares cost function
C(θ) (Eq. 11.1). Thus, minimizing the cost function to find the best-fit parameters θ∗
is equivalent to maximizing the likelihood, so the best-fit parameter vector inherits
the statistical properties of the maximum likelihood estimator [26]. This statistical
connection, arising from the assumption of normally-distributed residuals, makes the
sum-of-squares cost function C(θ) particularly useful in describing the structure of
parameter space. Other assumptions about the distribution of residuals are, however,
possible and imply different cost functions. Note that much of what we discuss in
this chapter has only been shown for sums-of-squares cost functions.

http://dx.doi.org/10.1007/978-3-319-21296-8_7
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11.2 Multivariate Sensitivity Analysis

We use sensitivity analysis to explore parameter space, observing how model out-
put changes as model parameters vary. In systems biology, sensitivity analysis is
commonly used to quantify the uncertainty associated with both best-fit parameter
values, and newmodel predictions generated using those parameter values. However,
methods used in sensitivity analysis also provide additional useful information about
parameter space. In this chapter, we are particularly interested in the correlation struc-
ture of parameter space, i.e. the relationships among combinations of parameters.
Ultimately, we will define sloppiness in terms of these correlations. In this section,
we describe one local and three global methods of multivariate sensitivity analysis.
We then use an examplemodel to illustrate how sensitivity analysis reveals parameter
correlations and how those correlations affect the precision of parameter inference.

11.2.1 Local (The Hessian)

The sensitivity of the fit of the model y(θ, t) to a given data set is determined by
how quickly the cost function C(θ) increases away from the best-fit parameters θ∗.
A useful local perspective on the cost landscape is given by a quadratic expansion
of the cost function:

C(θ) ≈ C(θ∗) + ∇C(θ∗)(log θ∗ − log θ) + 1

2
(log θ∗ − log θ)ᵀH(log θ∗ − log θ) .

(11.3)

The gradient ∇C(θ∗) of the cost function is, by definition, zero at the best-fit para-
meters θ∗. The N × N Hessian matrix H is defined as

Hi, j ≡ ∂2C

∂ log θi ∂ log θ j

∣∣∣∣
θ=θ∗

. (11.4)

Because it involves second derivatives, the Hessian can be difficult to calculate. If the
residuals r are small at the best-fit (i.e., the fit to the data is good) then the Hessian
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can be well-approximated by H ≈ JᵀJ . The Jacobian matrix J is the M × N matrix
of partial derivatives of the residuals with respect to the parameters:

Jm,n = ∂rm

∂ log θn
. (11.5)

The first-derivatives in the Jacobian can be evaluated by finite differences or, for
ordinary-differential equation (ODE) models, by integrating sensitivity equations.

The Hessian describes the quadratic behavior of the cost function C near the point
θ∗, so analyzing theHessian corresponds to approximating the level curves ofC as N -
dimensional ellipsoids in parameter space (Fig. 11.1). The Hessian matrix is positive

Fig. 11.1 Local and global sensitivity analysis. a Local analysis around the best fit point (black
dot). Ellipses are curves of constant cost calculated from the Hessian matrix. Sensitivity in each
direction is proportional to the widths of the curves. b Scanning parameters along each axis around
the best fit point. c Latin Hypersquare scan with uniform priors. Every equal probability bin of
each parameter distribution is sampled exactly once. d Bayesian parameter vector ensemble for this
quadratic model.
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definite and symmetric, so it has real eigenvalues λ and eigenvectors v corresponding
to the principle axes of those ellipsoids. Additionally, the relationship between the
negative log-likelihood− log P(Data|θ) andC(θ) (Sect. 11.1.2) implies that inverting
theHessian inEq.11.4 gives an asymptotic approximation of the covariancematrix of
the parameters [22]. Thus, the covariance matrix has eigenvectors v and eigenvalues

λ−1, and the widths of the principle axes of the ellipsoids are proportional to λ− 1
2

(Fig. 11.1a).

11.2.2 Global

Local sensitivity analysis accurately measures model sensitivity when parameter
space is linear and smooth, so the cost minimum is well defined, but these conditions
are not guaranteed to hold in systems biology models. In particular, the relationship
between parameters may be nonlinear near the best fit, so the quadratic map imposed
by the Hessian may be a poor approximation to the actual cost surface. Figure11.2b
shows such a cost surface, in which strong nonlinearities cause the quadratic approx-
imation to overestimate the variability of the parameters. Moreover, some models
may have rough parameter spaces with multiple minima of similar model behavior
separated by ridges [25]. In such a landscape, local sensitivity analysis can be mis-
leading, because steep curvatures near a local minimum may obscure the true shape
of the parameter space.Globalmethods of sensitivity analysis address these problems
by sampling parameter space in a finite neighborhood around the best fit. Broadly,
such methods fall into two categories, scanning methods and Bayesian methods.

Scanning methods sample parameters without regard to the data and look for
correlations between locations in parameter space and the model behavior or value
of the cost function at those locations. Bayesian methods sample from the posterior
distribution of the parameters given the data and use those samples to make infer-
ences about the sensitivity of the model. The challenge in both cases is to generate
a sufficiently dense sample of the parameter space that valid inferences can be made
about the sensitivity of the model to parameter changes. Here we describe two para-
meter scanning and two Bayesian methods that are frequently used for multivariate
sensitivity analysis in biological modeling.

11.2.2.1 Parameter Scanning

One way to generate parameter sets is to simply scan the parameter space, varying
one parameter at a time in small intervals over a range of values (Fig. 11.1b). Only
in the unusual case where the principal axes of the model sensitivity line up with
the parameter axes will this method provide an accurate measure of the uncertainty
in parameter estimates, because it ignores correlations between parameters. Scan-
ning combinations of parameters to capture those correlations is, however, often
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prohibitive for large models, because the number of points needed to define a grid
in N dimensions grows exponentially with N .

Latin Hypercube Sampling (LHS), a generalization of the Latin Square experi-
mental design, is a method for sampling parameter space in such a way that correla-
tions between parameters can be uncovered.Marino et al. [50] describe an application
of LHS in the context of sensitivity analysis, in which each parameter is assigned
a probability distribution. These probability distributions incorporate prior informa-
tion about the range of values a parameter can take, are often normal or uniform,
and need not be the same for every parameter. Each of the probability distributions
is divided into B equal probability bins, and B parameter vectors are generated by
randomly sampling one bin from each parameter distribution without replacement,
keeping track of which bin each value came from. The result is a group of parame-
ter vectors such that each value for a given parameter was drawn from a different
part of its distribution (Fig. 11.1c). The cost function is evaluated for each of these
parameter sets and the correlation between costs and bins describes the sensitivity
of the model. Computing partial correlations among parameter combinations reveals
the correlation structure of the parameter space. While LHS is computationally effi-
cient due to the Latin Square randomization, its use in analyzing biological models
requires special care because nonlinearities in parameter space can render correlation
analysis inaccurate [50]. For other approaches to parameter scanning, see Chap.13
in this volume [77].

11.2.2.2 Bayesian Ensembles

Parameter scanning methods sample parameter vectors without regard to the data.
Thus, the resulting sample may contain many vectors that poorly fit the data and
add little to our understanding of the relevant distribution of parameters. Bayesian
approaches maximize information about the distribution of parameters around the
best fit by sampling densely in areas corresponding to good fits and sparsely else-
where. Bayesian Markov-chain Monte Carlo (MCMC) walks through parameter
space have been widely used in systems biology to construct ensembles of parame-
ter sets [9, 13, 14, 24, 27, 79], and flexible approximate Bayesian methods have
recently been developed. (For more on Bayesian approaches to sampling parameters
and choosing among models, see Chaps. 9 and 10 in this volume [38, 66].)

The goal of Bayesian MCMC is to sample from the posterior distribution
P(θ |Data) of parameter sets given the observed data. From Bayes’ rule:

P(θ |Data) = P(Data|θ)P(θ)

P(Data)
, (11.6)

where P(Data|θ) is the likelihood defined in Eq.11.2, P(θ) is the prior probabil-
ity of the parameters, and P(Data) is the evidence for the data. P(Data) is often

http://dx.doi.org/10.1007/978-3-319-21296-8_13
http://dx.doi.org/10.1007/978-3-319-21296-8_9
http://dx.doi.org/10.1007/978-3-319-21296-8_10
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difficult to calculate but is inmany cases an unimportant normalization, leading to the
proportionality:

P(θ |Data) ∝ P(θ)P(Data|θ) . (11.7)

This proportionality allows a relative posterior probability to be calculated for any
parameter set in terms of the likelihood and the prior. As we saw in Sect. 11.1.2, the
likelihood can itself often be calculated in terms of the least squares cost function.
The prior distribution reflects pre-existing knowledge of the distribution of parameter
values, often from other experiments or analogy with similar molecular parameters.
Early work focused on uniform priors [9, 13, 14], while more recent work employs
log-normal [24, 27, 32] or gamma [79] priors.

The Markov chain is usually started at the best-fit parameter set and allowed to
walk through parameter space sampling the posterior distribution of θ . At each step
of the walk theMetropolis-Hastings criterion [17] is applied, such that at the j th step
a new random vector θtest is generated and

θ j+1 =
{

θtest , with probability α

θ j , with probability 1 − α ,
(11.8)

where

α = min

{
1 ,

P(θtest|Data)
P(θ j |Data)

}
. (11.9)

Thewalk thus always acceptsmoves to parameter sets with higher posterior probabil-
ity and sometimes accepts moves to parameter sets with lower posterior probability.
This random walk generates an ensemble of parameter vectors that converges to the
posterior distribution [17]. Themarginal distributions for each parametermeasure the
sensitivity of the fit to changes in that parameter, integrating over changes in the other
parameters, and provide confidence intervals for the best-fit value. The covariance
matrix of the ensemble describes the correlation structure of the cost landscape.

11.2.2.3 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) allows sampling of approximate pos-
terior parameter distributions when the likelihood function is analytically or com-
putationally intractable. Both Markov-chain [11, 51] and Sequential Monte Carlo
(SMC) [64, 67] methods exist. The SMC method uses sequential importance sam-
pling [20] to shorten chain length by preventing the algorithm from getting stuck in
areas of low probability [67]. ABC has the advantage that it can be used to sample
the parameter space of stochastic models, in addition to deterministic models [67].

The main difference between ABC and likelihood-based MCMC is that at each
step, rather than evaluating the likelihood of θtest the algorithm instead generates
a new simulated data set Y ′

s,c(t) from ys,c(θtest, t) and computes a distance metric
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ρ(Ys,c(t) , Y ′
s,c(t)). Possible distance metrics include the euclidian distance, squared

distance, and total absolute deviation, among many others. At the j th step

θ j+1 =
{

θtest , with probability α ,

θ j , with probability 1 − α ,
(11.10)

where

α =
{
0 , ρ(Ys,c(t) , Y ′

s,c(t)) > ε

min
{
1 ,

P(θtest)
P(θ j )

}
, ρ(Ys,c(t) , Y ′

s,c(t)) ≤ ε ,
(11.11)

and ε is some small number chosen to bound the acceptable distance between sim-
ulated and real data. This chain generates a collection of parameter vectors drawn
from the joint distribution P(θ |ρ(Ys,c(t) , Y ′

s,c(t)) ≤ ε), which can be used in the
same way as the joint distribution generated from Bayesian MCMC. In the case of
a deterministic ODE model, choosing ρ to be the squared distance and performing
an ABC analysis with decreasing ε is equivalent to the maximum-likelihood method
used in Bayesian MCMC with a least-squares cost function [67].

11.2.3 Example: Robertson Model

To illustrate the concepts discussed in this section and throughout the chapter, we
followEydgahi et al. [24] and consider a set ofmass-action reactions among chemical
species A, B, and C originally formulated by Robertson [58]:

A
k1−−→ B , 2B

k2−−→ B + C , B + C
k3−−→ A + C . (11.12)

These reactions yield the nonlinear system of ODEs:

d [A]

dt
= k3 · [B] · [C] − k1 · [A] , (11.13)

d [B]

dt
= k1 · [A] − k2 · [B]2 − k3 · [B] · [C] , (11.14)

d [C]

dt
= k2 · [B]2 . (11.15)

As initial conditions, we took

[A0] = 1 , [B0] = [C0] = 0 . (11.16)
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Fig. 11.2 Data fitting for the Robertsonmodel. a Simulated data and best-fit trajectories.Error bars
correspond to one standard deviation. b Corresponding cost landscape showing best-fit parameters
(red point), and the confidence interval from the Jᵀ J approximation to the Hessian (blue ellipse).
One hundred samples from a Bayesian MCMC ensemble (white dots), and geodesic curves starting
at the best-fit (red lines) are also shown. Top and right panels show marginal distributions of k1 and
k3, respectively, inferred from the Hessian approximation (blue curve) and the Bayesian ensemble
(white histogram)



11 Sloppiness and the Geometry of Parameter Space 281

We generated synthetic data points for [A], [B], and [C] by sampling every 8 time
units from the model with initial parameters

k1 = 0.04 , k2 = 3 × 107 , k3 = 10,000 , (11.17)

and adding normally-distributed noise to each data point with standard deviation
equal to 25% of the maximum value of the corresponding variable. We then fixed
k2 and used least-squares optimization to fit the synthetic data, estimating k1 and k3
(Fig. 11.2a).

We conducted sensitivity analysis using both the Hessian matrix (local) and an
ensemble of parameter sets sampled by Bayesian MCMC (global), using Sloppy-
Cell [55]. In both cases, we added log-normal priors that restricted k1 and k3 to
remain within three orders of magnitude of the initial values (Eq.11.17), with 95%
confidence. The quadratic approximation (Fig. 11.2b, blue ellipse) mimics the shape
of the cost landscape quite well in the vicinity of the best fit, but it overestimates
the variability in these two parameters, due to the strong nonlinearity in their rela-
tionship. The ensemble (Fig. 11.2b, white dots), on the other hand, captures the true
posterior distribution of parameters.

This example illustrates someof the difficulties encounteredwhenusingparameter
scanning methods for sensitivity analysis. A simple scan along each parameter axis
at the best fit value will dramatically underestimate the variability in the parameter
estimates, and the nonlinearities in the landscape will render the correlation analysis
used in LHS inaccurate.

11.3 Sloppiness

The topography of the cost landscape plays a critical role in modeling. For example,
the cost landscape of the Robertson model (Fig. 11.2b) is highly anisotropic, as
indicated by the eigenvalue spectrum in Fig. 11.3a(i). Near the best-fit, the parameter
combination k1/k3 is tightly constrained (corresponding to the large eigenvalue). By
contrast, the parameter combination k1 × k3 is loosely constrained (corresponding
to the small eigenvalue), so inferred values of k1 and k3 have large uncertainty. In
2003, Brown and Sethna noted similar behavior in a much more complex signaling
model [13, 14], leading to the discovery of sloppiness.

Brown and Sethna used a system of 15 nonlinear differential equations, involving
48 rate constant parameters, to model the activation of ERK1/2 by epidermal growth
factor (EGF) and neuronal growth factor (NGF) in PC12 cells [14]. They fit their
model to 68 data points tracking the time-course of activation of several proteins
in the system. When they analyzed the corresponding Hessian matrix, they found
a surprising regularity in the eigenvalue spectrum (Fig. 11.3a(iv)). The eigenvalues
spanned many orders of magnitude roughly evenly, a phenomenon they deemed
sloppiness. The large eigenvalues and corresponding eigenvectors defined stiff com-
binations of parameters that were tightly constrained, whereas the small eigenvalues



282 B.K. Mannakee et al.

Fig. 11.3 Sloppy parameter spaces, eigenvalues, and data space. a Eigenvalue spectra for several
sloppy models, illustrating different approaches to parameter and data space. i Jᵀ J eigenvalues of
the Robertson model and data described in Sect. 11.2.3. ii Principle components analysis (PCA)
eigenvalues of a Bayesian parameter ensemble for the Robertson model (inverted for comparison
with column i). iii PCA eigenvalues of the model manifold for the Robertson model (inverted and
rescaled so the largest eigenvalue matches the largest eigenvalue in column i). iv Jᵀ J eigenvalues
of the Brown and Sethna model for differentiation in PC12 cells [14] that was fit to 68 data points.
v PCA eigenvalues of a Bayesian parameter ensemble for the PC12 model [32], generated with
log-normal priors similar to Robertson model (inverted for comparison with column iv). vi Jᵀ J
eigenvalues for the PC12 model fit to continuous data on all molecular species in the model [32]
(rescaled so the largest eigenvalue matches the largest eigenvalue in column iv). b The sloppy
mapping between parameter and data space implies that spherical regions of parameter space map
to distorted sloppy regions in model space, and vice-versa [18]

and corresponding eigenvectors defined sloppy combinations that were loosely con-
strained.1 Moreover, a similar pattern of eigenvalues was found even when consid-
ering large amounts of perfectly-fit synthetic data on every species in the model
(Fig. 11.3a(vi)), suggesting that sloppiness was a property of the model itself, not
the particular data set. As illustrated in Fig. 11.3b, this sloppiness implies that large
volumes of parameter space canmap to a small volumes in data space, and vice-versa.

The importance of sloppiness to systems biology became more apparent in 2007,
when Gutenkunst et al. found sloppiness in a diverse set of sixteen other systems
biology models [32]. In a systematic survey of the BioModels database [48], Erguler
and Stumpf later found sloppiness in 180 systems biology models [23].

1Concurrent with Brown and Sethna’s work, Rand et al. independently noted an exponential spacing
of eigenvalues for several circadian clock models, although Rand et al. focused their analysis on
the stiffest few eigenvalues [57].
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Although similar in spirit, sloppiness differs from conventional conceptions of
robustness [46]. Typically, when a biological system is deemed robust it means
that a particular qualitative behavior is insensitive to a particular perturbation. That
perturbation may be a change in parameter values [78], temperature [56], or structure
of the system. Sloppiness, on the other hand, focuses on the quantitative behavior
of the model and its sensitivity to changes in combinations of parameters. A system
may be sloppy, but not be robust to changes in individual parameters. For example,
at the best-fit set of parameters, the Robertson model is robust to changes in k1 or
k3 that leave the stiff parameter combination k1/k3 unchanged, but it is fragile to
changes in either parameter individually.

Brown and Sethna’s discovery of sloppiness spawned a large body of literature
exploring its theoretical basis. Early work on the origins of sloppiness focused on
symmetries between parameter effects [76], but recent connections with information
geometry and interpolation theory have revealed a more general origin (Sect. 11.4.1).
Although it has been best-studied in the context of systems biology, sloppiness also
appears in non-biological models [30, 76], including classic statistical problems such
as fitting a sum of exponentials or polynomials to data [76]. In classic physics models
for magnetism and diffusion, sloppiness emerges when observations are restricted to
large length scales, somicroscopic details of the systemcease tomatter [49].A similar
phenomenon may be occurring in systems biology, where most experiments probe
the collective behavior of many interacting reactions. The ubiquity of sloppiness also
suggests that it may have implications for biological evolution [18].

In the remainder of this chapter, we focus on the practical implications of sloppi-
ness for modeling biological systems, through building predictive models, designing
experiments, and developing numerical methods.

11.3.1 Local and Global Perspectives

We have defined sloppiness in terms of the distribution of the eigenvalues of the
Hessian matrix. For nonlinear models, however, the Hessian depends on where in
parameter space it is evaluated, as exemplified by the curved basin of the Robertson
model (Fig. 11.2b). In the Robertson model and in the Brown and Sethna PC12
model [14], Hessian matrices calculated using multiple parameter sets from the
MCMC posterior distribution are all sloppy, with similar eigenvalue spectra but dif-
fering eigenvectors [30]. This suggests that the curved basins are everywhere locally
sloppy, but a more global perspective can be obtained from Principal Component
Analysis (PCA) of the MCMC parameter set ensemble.

PCA is the eigen-decomposition of the covariance matrix of a set of points in
space (here we focus on points in parameter space), and it has a broad range of
applications in statistics [1, 37]. (For more on PCA and other statistical models in
systems biology, see Chap.6 in this volume [63].) PCA is defined such that the first
principal component is the eigenvector with the largest eigenvalue, and it points in
the direction that accounts for the largest amount of variance in the positions of the

http://dx.doi.org/10.1007/978-3-319-21296-8_6
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points. The eigenvector with the second-largest eigenvalue points in the direction
that accounts for the second-largest amount of variance in positions of the points,
orthogonal to the previous direction, and soon.TheHessianmatrix and the covariance
matrix share eigenvectors (Sect. 11.2.1), so we can think of performing PCA on
an ensemble as the global analog to the local analysis of the Hessian matrix. The
eigenvalues of the Hessian are inversely related to those of the principal components,
and in Fig. 11.3a(ii, v) we take the inverse of the PCA eigenvalues for comparison.

Because the ensemble captures nonlinearities in the parameter space if they exist,
wemight wonder whether models with sloppyHessian eigenspectra also have sloppy
PCA eigenspectra. Figure11.3a(i, ii) shows the eigenvalues for the Robertson exam-
ple computed using the Hessian and by PCA, respectively. The similar spacing of
eigenvalues shows that the aspect ratio of the level curves of the cost manifold are
preserved, even as nonlinearities cause them to curve. Figure11.3a(iv, v) show cor-
responding Hessian and PCA spectra for the PC12 model [13], where the ensemble
in Fig. 11.3a(v) was generated with priors similar to those we used for our Robertson
model. The spectrum is truncated from below by the prior,2 and the largest eigenval-
ues are reduced due to nonlinearities in the parameter space that are better captured
by the ensemble. Although quantitative differences are evident in the eigenspectra
generated by the two methods, qualitatively they are both sloppy, spanning several
orders of magnitude with eigenvalues that are evenly spaced in the logarithm. In
addition to these empirical comparisons of Hessian and PCA eigenspectra, recent
work in information geometry (Sect. 11.4.1) also suggests that sloppiness is a global
property.

11.3.2 Predictive Modeling from Sloppy Systems

Because sloppiness appears universal in systems biology models, attempting to fit
individual parameters in such models is difficult and often uninformative. Even with
extensive time-series data, inferred values for individual parameters are often impre-
cise, because the model is insensitive to changes to most parameter combinations.
The common practice of reporting only the means and confidence intervals on indi-
vidual parameters should thus be avoided. On the other hand, because the model is
quite sensitive to changes in a few parameter combinations, with precise measure-
ment of time-series data it is often possible to tightly constrain model predictions,
despite large individual parameter uncertainties [32]. Moreover, in most cases pre-
cisely modeling and predicting system behavior is more compelling than precisely
inferring individual parameters.

2A log-normal prior that bounds a parameter θ to be, with ≈95% confidence, between θ0/F and
θ0 × F corresponds to an additional residual in the cost function (Eq.11.1) of r = (log θ −
log θ0)/ log

√
F . Such a residual adds 1/(log

√
F)2 to the diagonal elements of the Hessian matrix,

bounding the eigenvalues from below. In our case, F = 103, so the eigenvalues must be greater
than ≈0.084.
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For the Robertson model (Sect. 11.2.3 and Fig. 11.2), the individual parameters
k1 and k3 are only loosely constrained by time-course data, so our inferred values
for these parameters, whether using the Hessian approximation or Bayesian MCMC
sampling, span many orders of magnitude, as shown by the top and right panels in
Fig. 11.2b.The cost landscapedoes showadistinct nonlinear canyonof parameter sets
that fit the data well (Fig. 11.2b), but this canyon does not align with any individual
parameter, so inferring individual parameters with high precision is difficult. On
the other hand, combinations of parameters perpendicular to the canyon are tightly
constrained.

Because predictions are often more important than individual parameter values,
we tested the ability of our synthetic time-course data in the Robertson model to
constrain a novel prediction. In particular, we added a new reaction to the model:

A + C
k4−−→ B , k4 = 1. (11.18)

We then predicted the time course of [C] in this four-reaction model by generat-
ing trajectories using the results of our data fit of the original three-reaction model
(Eq.11.12, Fig. 11.2).Whenwe generated a set of predictions assuming that we knew
k1 and k3 to high precision (95% confidence interval of ±50%), the prediction for
[C] was tightly constrained (Fig. 11.4a, b). If we instead knew k1 precisely, but k3
imprecisely, the prediction of [C]was uninformative (Fig. 11.4c, d), because the cor-
responding parameter ensemble includes parameter sets with high cost, rather than
exploring only the canyon. When we approximated the stiff and sloppy directions
using the Hessian, as in (Fig. 11.4e, f) and generated predictions from this set of para-
meter combinations, we recovered some constraint on the prediction uncertainties.

Fig. 11.4 Parameter inferences and prediction 95% confidence intervals for the Robertson model
(Sect. 11.2.3). a, b Assuming both parameters are measured to ± 50% precision. c, d Assuming k1
is measured to high precision, but k3 must be guessed to low precision (95% confidence interval
spanning three orders of magnitude). e, f Evaluating the prediction using samples from the Jᵀ J
approximation to theHessianmatrix. g,hEvaluating the prediction using samples from theBayesian
MCMC ensemble illustrated in Fig. 11.2b
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Taking points from the MCMC-generated ensemble constrained uncertainty even
further (Fig. 11.4g, h).

In the Robertson model, both the Hessian and Bayesian-ensemble approaches
constrained prediction uncertainty much better than a mixture of well- and poorly-
determined rate constants. However, the Hessian did not perform as well as Bayesian
MCMC, because the cost manifold is nonlinear; in other words, the canyon of well-
fitting parameter sets is curved. The Hessian approximates the stiff and sloppy direc-
tions at the best-fit parameters, but away from the best-fit parameters the stiff and
sloppy directions inferred fromHessian deviate from the true shape of the cost mani-
fold, so points outside the canyon are sampled. BayesianMCMCavoids this problem,
as there is no assumption of linearity of the cost manifold, so the sampling follows
the curve of parameter sets that both fit the data well and yield accurate predictions.
The Hessian approximation works well in the Robertson model, but it may fail in
more complex models with stronger nonlinearities in the cost landscape [24, 31].

11.3.3 Experimental Design

Motivated by the previous example of precise predictions from a sloppy model with-
out precise parameters, we turn to the design of informative experiments. Experi-
mental design is a large sub-field of systems biology, and many methods have been
developed for designing experiments andmodels to extract optimal information about
a quantity of interest [3, 15, 34, 44, 47]. In this section, we discuss several stud-
ies that directly address sloppiness. One identifies additional time-series data points
that improve system behavior prediction [15], and the others identify experimental
conditions that improve parameter inference [3, 34, 68].

11.3.3.1 Optimal Design for Prediction

As illustrated by the Robertson model in Fig. 11.4c, d, precisely measuring individ-
ual parameters in a complex model may not improve the predictive power of the
model. To overcome this difficulty, Casey et al. developed an approach for designing
experiments to improve the prediction of unmeasurable quantities and applied it to
a model of epidermal growth factor receptor (EGFR) activation [15].

In the EGFR network, Casey et al. were interested in predicting the dynamics
of the triple complex of Cool-1, Cdc42 and Cbl, each of which potentially disrupts
receptor down-regulation. The triple complex was not directly measurable, so they
relied on a complex systems biology model to predict its dynamics. Casey et al. fit
their model to existing experimental data to obtain best-fit parameter values θ∗ and
an ensemble of parameter sets that fit the data well, but they found that the predicted
trajectory for the triple complex had large uncertainty.

Given the large prediction uncertainty from the existing data, Casey et al. set out
to design a new experiment to minimize the variance of the prediction. Doing so
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required searching over the space of possible experiments and evaluating prediction
variance many times. Bayesian sampling (Sect. 11.2.2.2) is the preferred way to
estimate prediction variance, but it is computationally very expensive, so Casey et
al. used an approximation to the variance of their prediction p:

Var(p) ≈ ∂p

∂θ

∣∣∣∣
θ∗

(JᵀJ )−1 ∂p

∂θ

∣∣∣∣
θ∗

. (11.19)

Here (JᵀJ )−1, the inverse Fisher InformationMatrix (FIM), asymptotically approx-
imates the covariance of the parameters, and ∂p/∂θ is a linear approximation of the
model response to changes in the parameters [15].

Casey et al. employed a sequential experimental design tominimize the prediction
variance calculated via Eq.11.19. They first searched over experimental conditions,
measurable molecular species, and timepoints to find the single data point whose
addition most greatly reduced the prediction variance. This was computationally
feasible because adding a single data point to the collection of measurements is a
rank-one update of the Fisher Information Matrix [15]. Assuming that single data
point represented the optimal condition and species to measure, Casey et al. then
optimized over possible combinations of measured timepoints to design a complete
experiment.

Applying their computational analysis, Casey et al. carried out the experiment
they had designed. Adding the new data points to their model, they built a new
ensemble of parameter sets from which to make predictions. As desired, the new
ensemble dramatically reduced uncertainty in the predicted dynamics of the triple
complex. Uncertainties on individual parameter values, however, were not substan-
tially smaller. The sloppiness of the EGFRmodel allowed Casey et al.’s experimental
design to improve prediction precision without improving parameter precision, but
experimental design can also improve parameter precision.

11.3.3.2 Optimal Design for Parameter Inference

Fitting time-course data typically poorly constrains individual parameter values in
sloppy models, but careful experimental design can yield well-constrained parame-
ters. In a recent manuscript, Tönsing et al. argue that sloppiness can be generically
caused by autocorrelation and sparseness in the Jacobianmatrix (Eq. 11.5) of parame-
ter sensitivities for residuals between model and data [68]. Autocorrelation naturally
arises in time-course measurements, and sparseness arises because different predic-
tions may be sensitive to different parameters. Tönsing et al. further show using a
model and in silico experiments from theDREAM6challenge [52] that careful exper-
imental design can avoid autocorrelation and sparseness, minimizing sloppiness in
the resulting parameter inferences.

In a more targeted study, Apgar et al. have shown [3] that carefully designed
complementary experiments can in principle tightly constrain all parameter values
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in the original Brown and Sethna sloppy model of EGF/NGF signaling in PC12
cells [13, 14]. Apgar et al. sought to design a set of experiments that would together
yield uncertainties on all 48 model parameter values of less than 10%, based on the
Hessian approximation. To do so, they considered 164,500 potential experimental
conditions, encompassing various levels of EGF and NGF stimulation and protein
overexpression or knockdown.To avoid computationally challenging re-optimization
of parameter values, they assumed that each experiment would yield data that exactly
matched the model prediction. Their design processes employed a greedy algorithm
that, at each step, chose the experiment that constrained the most parameters to
within 10% that were not constrained by any earlier experiment. Remarkably, they
found that five carefully chosen experiments were enough to tightly constrain all
parameters [3]. It was essential that the experiments be chosen in a complementary
way; choosing random experiments or even the best individual experiments gave
much poorer results. The computational experiments that Apgar et al. considered
used continuously sampled species time courses, yielding effectivelymanymore data
points than typical experiments, which may account for much of the improvement
in parameter constraint [16]. Such dense measurements are, however, becoming
increasingly feasible, and even with fewer collected data points, tight constraint on
all parameters in the model are still possible [33].

Recently, Hagen et al. have relaxed many of the simplifying assumptions made
in Apgar et al.’s work [34]. Most importantly, they considered data at discrete points
along the trajectory with some assumed experimental error instead of continuous
measurements with zero error. As a result, they had to re-optimize parameters at each
stage of the experimental design, so each experiment was chosen on the basis of a
model with imperfect parameters. Nevertheless, they found that just six experiments
were needed to constrain all parameters to within 10% as assessed by the Hessian
approximation, confirming the previous results.

The experiments designed by Tönsing et al. [68], Apgar et al. [3], and Hagen
et al. [34] are complex, and to date they have not been carried out in the lab. This
work, however, demonstrates the power of experimental design and offers hope that
parameter values can indeed be precisely inferred even for sloppy models.

11.4 Information Geometry Perspective

To this point, we have reviewed work whose focus was analyzing the properties of
parameter space. However, we have seen it is often beneficial to focus on the model
predictions rather than the parameter values. Recent results focusing on data space
rather than parameter space have proven beneficial for understanding the properties
ofmodels and for advancing numerical techniques for exploring them.This approach,
usually known as information geometry since it combines information theory with
differential geometry, is a naturalmathematical language for exploring parameterized
models. As we have seen, in essence a model is a mathematical mapping from
parameters to predictions. This recognition leads to the interpretation of a model as



11 Sloppiness and the Geometry of Parameter Space 289

a manifold embedded in the space of data. The approach is very general, applicable
to any parameterized statistical model (although we focus on least squares models
in this review) and has many deep connections to statistics [2, 4, 7, 41, 54]. Because
differential geometry is foreign to most biologists, much of the technical aspects
and insights of information geometry are not immediately accessible to much of
the systems biology community. In this section, we give a summary of recent results
without assuming a prior understanding of differential geometry, illustrating the types
of analyses that can be performed and providing references for further study.

To illustrate the approach for least-squares models, we return to the Robertson
model introduced in Sect. 11.2.3. This model has two parameters and was fit to
M = 15 data points. Any experimental realization of the data can be interpreted as a
single point inRM . Likewise, for any value of the parameters, the model predictions
are similarly a point in R

M . As the two model parameters k1 and k3 are varied
over their allowed ranges, the model sweeps out within the 15-dimensional data
space a two-dimensional surface known as the model manifold and denoted by M .
In general, for a model of N parameters fit to M data points, the model manifold
is the N -dimensional surface embedded in R

M constructed by varying the model
parameters over their physically allowed values.

Figure11.5d shows a three-dimensional projection of the high-dimensional data
space for theRobertsonmodel. Themanifoldwas calculated using a grid of parameter
values over the ranges shown in Fig. 11.2b. Model trajectories were sampled at the
equally-spaced timepoints for which data was simulated in Fig. 11.2a. The axes of
the visualization come from a principal component analysis (Fig. 11.5a–c) that was
performed for the resulting set of model trajectories.

The Robertson model manifold illustrates several features of the information
geometry perspective that make it a powerful tool for studying models that comple-
ments the approach of considering the cost surface in parameter space. First, there is
no information loss in the model manifold, i.e. the manifold is mathematically equiv-
alent to the model itself. In contrast the cost surface in parameter space condenses
the M numbers making up the prediction and data vectors into a single number.

Second and relatedly, information geometry separates the model, i.e. the manifold
embedded in data space, from the data to which it is being fit, i.e. a point in the data
space (blue star in Fig. 11.5). This is a useful abstraction which allows one to study
the properties of the model itself irrespective of what is experimentally observed.
The cost surface in parameter space will vary with the observed data. The best-fit
parameters correspond to the point onM nearest to the data (red point in Fig. 11.5).

Third, the set of points that constitute the model manifold are the same regardless
of how the model is parameterized. That is, the geometric properties of the model
are the same if a systems biology model is expressed in terms of reaction rates or
time constants, in bare or log-parameters. In fact, it will be unchanged if the model is
reparameterized in a complicated, highly nonlinear way. Because of this, the geomet-
ric perspective places the emphasis on model predictions rather than the parameters.
The parameters are not ignored completely, but act as coordinates on the manifold,
i.e. labels for specific predictions. The grid lines in Fig. 11.5d–g correspond to a
square grid in log-parameter space. In general, differential-geometric objects are



290 B.K. Mannakee et al.

Fig. 11.5 Modelmanifold evaluated over the parameter space shown in Fig. 11.2b for theRobertson
model (Sect. 11.2.3). a–c First three principle components of model prediction variation over the
manifold. Colors identify species as in Fig. 11.2a. The first principle component, for example,
represents an increase in [C] and a decrease in [A] that is roughly constant over the sampled
timepoints. d Projection of the model manifold onto the first three principle components. Blue star
shows the data, and red dot shows the best-fit trajectory. Red lines correspond to the geodesics in
Fig. 11.2b. e–g Projections of the model manifold onto pairs of the first three principle components,
as in (d)

constructed in terms of derivatives of the predictions with respect to the parameters
in such a way that their relevant properties are the same for all possible parameteri-
zations. Indeed, differential geometry is generally concerned with the properties of
the manifold that are invariant under such reparameterizations.

A fourth and final point is that the language of differential geometry naturally
accommodates the potentially large dimensionality of both the data space and the
model manifold. Visualizations of both the cost surface and the model manifold are
limited to only a few dimensions, but the geometric properties of high-dimensional
spaces can be very different from those of the three-dimensional world in which
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our visualizations live. For example, the specific properties of sloppiness are closely
tied to the properties of high-dimensional manifolds. The mathematical formalism
of differential geometry, however, has no such limitation and provides a framework
within which the space can be systematically studied.

A particularly useful differential-geometric tool is a geodesic. A geodesic can be
understood qualitatively as the generalization of straight lines to curved surfaces,
i.e. the path connecting two points such that its image in data space is as close to
a straight line as possible. A perfectly straight line is generally impossible, since
the surface is typically curved for nonlinear models. The geodesic is constructed
numerically as the solution of a nonlinear differential equation involving first and
second derivatives of the model predictions with respect to the parameters. We refer
the reader to any introductory text in differential geometry for more details [39, 65].
Several geodesic paths on the model manifold are shown in Fig. 11.5d–g, and the
corresponding paths in parameter space are shown in Fig. 11.2b.

11.4.1 Models as Interpolation: Geometric Sloppiness

Geometry helps us understand the phenomenon of sloppiness. The observed univer-
sality of sloppiness across a wide range of models is perplexing; its ubiquity suggests
some deep connecting principle [32, 76]. However, two other observations suggest
otherwise. First, the hierarchy of Hessian eigenvalues can be transformed into any set
of positive values by reparameterizing the model. Although such parameterizations
might be unnatural from a human perspective, they are mathematically acceptable.
Perhaps sloppiness is a reflection of how we humans choose to parameterize models.
Is the human-preferred parameterization somehow perverse from a mathematical
perspective? Second, sloppiness can be reduced by an appropriate choice of experi-
ments [3, 34, 73]. Perhaps sloppiness is furthermore a reflection on what we choose
tomeasure and not intrinsic to the system itself. Geometric arguments reconcile these
apparently contradictory observations.

The key observation is that model manifolds are typically bounded, as is our
example manifold in Fig. 11.5d. Considering the cost landscape in Fig. 11.2b, notice
that away from the best fit, the cost surface plateaus, apparently approaching a lim-
iting value. In fact, the parameters can be taken to zero and infinity without the
cost becoming infinite, implying that the model manifold must be bounded. For
any specific model this can be checked numerically using differential geometry. By
numerically constructing geodesics, the manifold can be systematically explored to
identify boundaries in any direction. Furthermore, by calculating the length of these
geodesic paths in data space, one can measure the extent of the manifold in any
given direction and calculate its aspect ratio. In this way it was found that typical
sloppymodel manifolds are not only bounded, but exhibit a hierarchy of widths anal-
ogous to the hierarchy of Hessian eigenvalues [71, 72]. For example, PCA analysis
of the data space points used to construct the model manifold for our Robertson
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model (Fig. 11.5d) reveals an exponential hierarchy of eigenvalues (Fig. 11.3b(iii)).3

This result is similar to the previously noted observation that sloppiness is generally
reflected as a global property as measured by PCA analysis of a Bayesian ensemble
(see Fig. 11.3b(ii, v)). However, in the current context the anisotropy is a reflection
of an intrinsic property of the entire range of model predictions, rather than the
ensemble of parameter values consistent with an instance of data.

This empirical observation of a hierarchy of widths in data space can be explained
by applying interpolation theory [71]. Orthogonal geodesic paths identify cross sec-
tions of the model manifold. Geometrically, the cross section is formed by fixing
the model output along a few axes (the directions orthogonal to the geodesic) and
varying the output along others. Now consider a time series of model predictions
for which a handful of time points have been fixed and the intermediate time points
are allowed to vary. Although not fixed themselves, the values of intermediate time
points can often be approximated by interpolating the values of those that are fixed.
Therefore, the corresponding cross sections of the model manifold must be bounded
by the accuracy of the interpolations.

For one-dimensional time series, the above argument can be made formal using
theorems from interpolation theory [71]. In this case, cross sections become more
narrow by roughly a constant factor for each additional fixed output, provided that
the number of effective degrees of freedom probed by the model predictions is much
less than the number of parameters. Qualitatively, this is understood to mean that the
“complexity” of the data to be explained is much less than that of the model. In a
sense, the model is over parameterized. However, it is often unclear how to remove
the unnecessary parameters, because the stiff and sloppy parameter directions are
almost always combinations of the bare parameters [32].

This argument suggests that models can be understood as generalized interpola-
tion schemes and explains a number of observations. First, it explains why accurate
predictions can be made by sloppy models when parameters are largely uncon-
strained; the predictions are interpolating from the existing data. It also explains why
sloppiness disappears when complementary experiments are chosen; the number of
effective degrees of freedom probed by the model becomes comparable to the num-
ber of parameters. In this case, the model needs all of the parameters to explain the
data, resulting in tight bounds on their estimates.

The connection between manifold widths and the Hessian eigenvalues can be
understood by dimensional analysis. The square roots of Hessian eigenvalues have
units of data space distance per parameter space distance. If the parameters are
expressed in the natural units of the problem, for example by using log-parameters,
then we expect the eigenvalues to reflect the natural length scales of the manifold,
i.e. the manifold widths as observed. What is interesting about this argument is the
implication that the “natural” parameterization preferred by the human modeler is

3Note that this PCA was done on points sampled uniformly in parameter space, not data space, and
this non-uniformity may bias the resulting eigenvalue summary of the model manifold. We expect,
however, that this approach provides a good first approximation to the hierarchy of manifold widths
that would be found by geodesics.
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actually not perverse after all. Indeed, encoded in this natural parameterization is
useful information: the length of the model manifold along several principal axes.

11.4.2 Applications to Numerical Methods

One of the most useful applications of the differential geometry approach involves
the development and improvement of numerical methods for exploring parameter
space. We now discuss two such improvements: the geodesic acceleration correc-
tion to the Levenberg-Marquardt algorithm for least squares data fitting [71, 72]
and the Riemannian manifold sampling methods for Markov-Chain Monte Carlo
(MCMC) [28].

11.4.2.1 Data Fitting

Fitting multi-parameter models to data via least squares can be notoriously difficult.
One reason for this is that as algorithms approach the best fit they become agonizingly
slow. This is because the cost surface in the vicinity of the best fit consists of a long,
narrow canyon, as illustrated for the Robertson model in Fig. 11.2b. The algorithm
must navigate this canyon en route to the best fit. The greater the aspect ratio of the
canyon, the smaller the steps the algorithm must take. For many sloppy problems,
as we have seen, it is not unusual for the canyon to have aspect ratios of 1000:1 or
more, leading to very slow convergence rates.

A second reason that data fitting is difficult is that it is hard for the algorithm
to even find the canyon to begin with. Observe in Fig. 11.2b how the cost surface
plateaus away from the canyon. Because the cost surface is so flat, it is difficult for
the algorithm to know in which direction to move. One typically finds that the results
of a fitting algorithm are inconsistent, “converging” to wildly different parameter
values depending on the starting point. This is typically attributed to multi-modality,
or a rough cost surface with many local minima [25, 53, 59]. Closer inspection
and the understanding of bounded model manifolds refines this picture in a very
useful way. Specifically, the parameter values that result from failed runs of search
algorithms typically contain parameters approaching their physical limits, e.g. zero or
infinity. Geometrically, these points correspond to boundaries of themodel manifold.
The failure of search algorithms is due to them getting stuck in the boundaries of
the model manifold en route to the best fit, i.e. being lost on the plateau. It was
found that by adding weak, regularizing “prior” terms to the cost function that kept
the algorithm away from the limiting parameter value, algorithms were much more
successful at finding best fits [72]. These terms should be chosen in a way to force
the algorithm to search in the region of parameter space to which the model behavior
remains sensitive to changes in the parameters.

A second geometrically-inspired improvement to data fitting is an improvement
to the common Levenberg-Marquardt algorithm known as the geodesic acceleration
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correction [71, 72, 75]. The motivation for this algorithm is the observation that
model manifolds typically have surprisingly small curvatures. (This observation
had been noted by statisticians for several decades [5–8, 10, 36] and was finally
explained by the same interpolation arguments that explain why the model mani-
folds are often bounded [71, 72].) Since the manifolds are relatively flat, the ideal
path for an algorithm to follow is a geodesic, i.e. a straight line through data space.
Notice in Fig. 11.2b how the geodesic path naturally follows the curvature of the
canyon in parameter space. In the limit of small curvature, the second-order cor-
rection to the Levenberg-Marquardt algorithm reduces to the second-order term in
the geodesic equation, which can be easily approximated with little computational
cost compared to other aspects of the algorithm. The result is an algorithm that is
dramatically faster at finding best fits. An open source FORTRAN implementation
of this algorithm is available for download [69].

11.4.2.2 Bayesian Posterior Sampling

As discussed in Sect. 11.2.2.2, MCMC is a powerful technique for exploring parame-
ter space and sampling the Bayesian posterior distribution. One of the challenges to
effectively implementing this approach is the need to run the algorithm long enough
to gather independent samples of the posterior. For a cost landscape with long nar-
row canyons, the Markov chain needs to effectively diffuse along the length of the
long axes of the canyon for each sample. For the same reason that data fitting algo-
rithms become sluggish in the canyon, the MCMC method also becomes very slow,
requiring a very long chain before independent samples can be identified.

In order to alleviate this problem, it was suggested by Girolami and Calderhead
that convergence could be improved by taking steps uniform in data space rather than
parameter space [28]. Effectively, at each step of the chain, random parameter steps
are proposed as a multivatiate normal distribution with covariance chosen so that the
corresponding steps in data space have covariance given by the identity. In this way,
steps are preferentially aligned with the axis of the canyon, reducing the number of
iterations necessary to generate independent samples. For extremely sloppy models
with large aspect ratios in the canyons around their best fits, the improvement in
convergence rate can be dramatic.

11.4.2.3 Curvature and Beyond

There are many other instances where differential geometry has provided insights
and advancements in modeling and numerical methods. One of the most important
concepts in differential geometry, and one that is beyond the scope of this review,
is curvature. Measures of curvature have been used to quantify nonlinearity in mod-
els [5, 10, 36], measure kurtosis [35], and identify the global minimum in least-
squares data fitting problems [21].
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Information geometry has also led to a new approach to model reduction known
as the manifold boundary approximation method [74]. By numerically constructing
geodesics to the edge of the model manifold, limiting approximations are identified
in the model that can be used to remove sloppy parameter combinations. The net
result is a sequence of effective models of decreasing complexity. These reduced
models remain expressed in terms of the microscopic parameters, i.e., there are no
black boxes, and dramatically highlight the emergent control mechanisms that gov-
ern the system’s behavior. Differential geometry also provides insights into questions
of parameter identifiability, which combined with model reduction techniques, can
be powerful tools for constructing appropriate mathematical representations of bio-
logical systems [70].

Although a relatively undeveloped approach, information geometry has provided
a wealth of insight into modeling and the numerical methods for exploring model
behavior.Much of the strength of the approach lies in its generality. Indeed, very little
of what is summarized in this section is specific to systems biology. In this respect,
applying information geometry to systems biology, with its wide array of models,
is a compelling synthesis for the development of new theoretical and computational
methods that are likely to not only advance biological understanding, but also find
application in other complex systems.

11.5 Conclusion

Mechanistic models in systems biology typically possess a profusion of parameters,
and this poses great challenge for modelers. In particular, understanding the mul-
tivariate sensitivity of the model to changes in parameter values is critical. Local
and global analyses of sensitivity complement each other, and Bayesian methods are
particularly powerful for assessing statistical confidence in parameter inferences and
model predictions.

Analysis of many models in systems biology and other fields has revealed that
nonlinear least-squares models are typically sloppy. Sloppy models have parameter
sensitivity eigenvalues that span many decades roughly evenly and thus have highly
anisotropicmappings between parameter and data spaces. Consequently, it is difficult
to infer precise parameter values from data fits, but some predictions can nevertheless
be tightly constrained. Careful experimental design can improve the precision of
parameter inferences or model predictions, depending on the goals of the modeler.
Information geometry offers a useful parameterization-independent perspective on
modeling, and combining it with interpolation theory suggests that sloppiness arises
because even complex models are often acting as interpolating functions between
available data points. The information geometry perspective also suggests improved
algorithms for optimization and Markov-chain Monte Carlo that account for the
anisotropic and curved model and parameter spaces common in sloppy models.

Modelers have tackled a huge number of complex nonlinear systems in biology
and other fields, and each model is unique. The study of sloppiness has shown,



296 B.K. Mannakee et al.

however, that models of very different systems are nevertheless governed by shared
deep statistical properties. Study of sloppy models thus offers insight and tools for
not only systems biology, but also many other fields of science.

For readers who want hands-on experience with the methods and ideas discussed
here, code implementing our analyses of the Robertson model is bundled with the
SloppyCell software [55], available at: http://sloppycell.sourceforge.net.
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