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ABSTRACT

Detecting somatic mutations withins tumors is key
to understanding treatment resistance, patient prog-
nosis and tumor evolution. Mutations at low allelic
frequency, those present in only a small portion of tu-
mor cells, are particularly difficult to detect. Many al-
gorithms have been developed to detect such muta-
tions, but none models a key aspect of tumor biology.
Namely, every tumor has its own profile of mutation
types that it tends to generate. We present BATCAVE
(Bayesian Analysis Tools for Context-Aware Variant
Evaluation), an algorithm that first learns the individ-
ual tumor mutational profile and mutation rate then
uses them in a prior for evaluating potential muta-
tions. We also present an R implementation of the
algorithm, built on the popular caller MuTect. Using
simulations, we show that adding the BATCAVE al-
gorithm to MuTect improves variant detection. It also
improves the calibration of posterior probabilities,
enabling more principled tradeoff between precision
and recall. We also show that BATCAVE performs
well on real data. Our implementation is computa-
tionally inexpensive and straightforward to incorpo-
rate into existing MuTect pipelines. More broadly, the
algorithm can be added to other variant callers, and
it can be extended to include additional biological
features that affect mutation generation.

INTRODUCTION

Cancer develops through the accumulation of somatic mu-
tations and clonal selection of cells with mutations that con-
fer an advantage. Understanding the evolutionary history
of a tumor, including the mutations that drive its growth, the
genetic diversity within it and the accumulation of new mu-
tations, requires accurate variant identification, particularly
at low variant allele frequency (1–4). Accurate variant call-
ing is also critical for optimizing the treatment of individual
patients’ disease (5–9). Low frequency mutations challenge

current variant calling methods, because their signature in
the data is difficult to distinguish from the noise introduced
by Next Generation Sequencing (NGS), and this challenge
increases with sequencing depth.

Many methods have been developed for calling somatic
mutations from NGS data. The earliest widely used so-
matic variant callers developed specifically for tumors, Mu-
Tect1 (10) and Varscan2 (11), used a combination of heuris-
tic filtering and a model of sequencing errors to identify
and score potential variants and set a threshold score de-
signed to balance sensitivity and specificity. Subsequent re-
search gave rise to a number of alternate strategies, in-
cluding haplotype-based calling (12), joint genotype anal-
ysis (SomaticSniper (13), JointSNVMix2 (14), Seurat (15),
CaVEMan (16) and MuClone (17)), allele frequency-based
analysis (Strelka2 (18), LoFreq (19), EBCall (20), deepSNV
(21), LoLoPicker (22), and MuSE (23)), and ensemble and
deep learning methods (MutationSeq (5), BAYSIC (24), So-
maticSeq (25) and SNooPer (26)). These methods vary in
their complexity and specific focus. But they all implicitly or
explicitly assume that the rate of mutation is uniform across
the genome.

The mutational processes that generate single nucleotide
variants in tumors do not act uniformly across the genome.
If fact, even the processes of spontaneous mutation that are
active in all somatic tissues depend sensitively on local nu-
cleotide context (27–29). Additional mutational processes
are active in tumors, due to mutagen exposure or defects
in DNA maintenance and repair, and these processes are
also sensitive to local nucleotide context (30–34). The spe-
cific mutational processes active in a particular tumor gen-
erate its unique mutation profile, and differences within and
between tumor types are pronounced (35–39). For example,
the mutation profiles differ substantially among the three
breast tumors illustrated in Figure 1B–D.

Here we present an enhanced variant-calling algorithm
that uses the biology of each individual tumor’s mutation
profile to improve identification of low allelic frequency
mutations. Our BATCAVE algorithm first estimates the
tumor’s mutation profile and mutation rate using high-
confidence variants and then uses them as a prior when call-
ing other variants. Our R implementation of the algorithm,
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Figure 1. Real tumor mutation profiles. In each panel, the x-axis corre-
sponds to each of the 96 possible mutation types, and the y-axis is the pro-
portion of total mutations of each type. (A) The observed mutation profile
of an acute myeloid leukemia used in our real data analysis (52). (B) The
observed mutation profile of a breast tumor used in our real data analy-
sis (4). (C and D) The observed mutation profiles of two additional breast
tumors (53).

batcaver, takes output from the MuTect variant caller
as input and returns the posterior probability that a site is
variant for every site observed by MuTect. Using both simu-
lated and real data, we show that the addition of a mutation
profile prior to MuTect produces a superior variant caller.
Our algorithm is simple and computationally inexpensive,
and it can be integrated into numerous other variant callers.
Broad adoption of our approach will enable more confident
study of low allelic frequency mutations in tumors in both
research and clinical settings.

MATERIALS AND METHODS

Somatic variant calling probability model

At every site in the genome with non-zero coverage,
Next Generation Sequencing produces a vector x =
({bi }, {qi }), i = 1 . . . d of base calls b and their associated
quality scores q, where d is local read depth. Variant callers
use the data x to choose between competing hypotheses:

H0 : Alt allele = m; ν = 0 (1)

H1 : Alt allele = m; ν = f̂ . (2)

Here m is any of the three possible alternate non-reference
bases and � is the variant allele frequency. The maximum

likelihood estimate of � is simply f̂ , the number of variant
reads divided by the local read depth. The posterior prob-
ability of a given hypothesis, P(m, �), is the product of the
likelihood of the data given that hypothesis and the prior
probability of that hypothesis. Assuming that reads are in-
dependent, this is

P(m, ν) = p(m, ν) ·
d∏

i=1

fm,ν(xi ), (3)

where fm, �(xi) is the probability model for reads, and p(m,
�) is the prior.

Assuming that the identity of the alternate allele and its
allele frequency are independent and that � is uniformly dis-
tributed, equation (3) becomes

P(m, ν) = p(m) ·
d∏

i=1

fm,ν(xi ). (4)

The focus of BATCAVE is to provide a tumor- and site-
specific estimate of the prior probability of mutation p(m).

Site-specific prior probability of mutation

The probability that we have denoted p(m) in equation (4)
is more precisely the joint probability that a mutation has
occurred M and that it was to allele m, which we denote
p(m, M). But p(m, M) is not uniform across the genome.
Rather it depends on the local genomic context C, so its full
form is p(m, M|C) (40). Assuming that m and M are inde-
pendent conditional on the genomic context, p(m, M|C) =
p(m|C)p(M|C), which we can use Bayes’ theorem to further
decompose as

p(m, M | C) = p(m | C)p(C | M)
p(M)
p(C)

. (5)

We next show how to estimate the quantities in equation (5).

Estimation of the mutation profile

Many aspects of genomic architecture can affect the so-
matic mutation rate at multiple scales (40). Here we focus
on a small-scale feature, the trinucleotide context, which
is known to strongly affect the prior probability of single-
nucleotide mutation (27–29). The trinucleotide context of
a genomic site consists of the identity of the reference base
and the 3’ and 5’ flanking bases. There are six classes of base
substitution: C>A, C>G, C>T, T>A, T>C, T>G (all re-
ferred to by the pyrimidine of the mutated Watson-Crick
pair). This results in a total of 32 (4 × 2 × 4) reference
contexts and 3 alternate bases per reference base. Indexing
by the c = {1. . . 32} contexts and by the m = {1. . . 3} al-
ternate bases, we have 96 possible substitution types Sm, c.
equation (5) is then

p(Sm,c) = p(m | C = c)p(C = c | M)
p(M)

p(C = c)
. (6)

The first two terms on the right-hand side can be estimated
from the observed mutation profile (Figure 1).
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We model the observed mutation profile S as multinomial
with parameter π = {πm,c}. Each element of π represents
the expected proportion of mutations that are to allele m
and in context c. In a tumor with many high-confidence ob-
served mutations, π could be estimated directly from the
observed mutation profile S. But in practice many entries
in π would then have zero weight. We thus model the dis-
tribution of S as Dirichlet-multinomial with pseudo-count
hyper-parameter α,

π | α ∼ Dirichlet(α)

S | π ∼ Multinomial(π).
(7)

In BATCAVE we use the symmetric non-informative hyper-
parameter α = 1, so a priori mutation is equally likely to
any allele and in any context.

To estimate π , we identify a subset of high confidence
variants, based on an initial calculation of their likelihood
given the data. These are variants for which the evidence
in the read data overwhelms any reasonable value of the
site-specific prior probability of mutation. Let D be the set
of high confidence variant calls, which we define as those
having posterior odds >10 to 1 without the site-specific
prior and s ∈ D be the substitution type of each mutation
in D. The posterior distribution of π is then p(π | D) ∼
Dirichlet(α′) where

α′
m,c = αm,c +

∑
s∈D

I{s = sm,c}, (8)

andI is the indicator function. Returning to Equation (6),
given that a mutation has occurred, the posterior probabil-
ity it occurred in context c is

p(C = c | M, D) =
∑

m α′
m,C=c∑

m,c α′
m,c

. (9)

The posterior probability of mutation to allele m given that
a mutation has occurred in context C = c is then

p(m | C = c, D) = α′
m,C=c∑

m α′
m,C=c

. (10)

The prior probability of each particular trinucleotide
context p(C = c) is computed simply as the proportion of
sequenced trinucleotide contexts that have context c. The
R implementation of BATCAVE ships with pre-computed
tables for both human whole exomes and whole genomes.

Estimation of the mutation rate

The final piece of Equation (6) is p(M), the prior proba-
bility of mutation, which we specify as the per-base per-
division mutation rate �. In an exponentially growing and
neutrally evolving tumor, branching process calculations (3)
show that the expected total number of mutations Mtot be-
tween two allele frequencies (fmin, fmax) is

Mtot( fmin, fmax) = N
μ

β

(
1

fmin
− 1

fmax

)
. (11)

The number of bases N is 3 · 109 for a whole genome and
3 · 107 for a whole exome. The quantity �/� is the effec-
tive mutation rate, where � is the fraction of cell divisions

that lead to two surviving lineages. We make the simplify-
ing assumption that there is no cell death (β = 1), so we
somewhat over-estimate �. We then estimate � by count-
ing observed high-confidence mutations between allele fre-
quencies fmin and fmax. Sample contamination by normal
cells can result in underestimation of tumor mutation al-
lele frequencies. To account for this, our implementation of
BATCAVE takes as input an estimated sample purity pur.
All estimated allele frequencies are then multiplied by a fac-
tor of 1/pur before being used in equation (11). We set fmax
to be the largest allele frequency in D, but we must choose
fmin conservatively, depending on sequencing depth. In the
R implementation of BATCAVE, fmin and pur are free pa-
rameters. For this paper, we set fmin = 0.05, because we are
working at high depth. For our simulated data analyses, we
set pur = 1, and for our real data analyses, we set pur to the
estimated purity.

Likelihood function

The current implementation of BATCAVE builds on Mu-
Tect, because MuTect reports the log ratio of the likelihood
functions for the null and alternative hypotheses (Equation
1) as TLOD (MuTect1) or t lod fstar (MuTect2). We used
MuTect 1.1.7 for all analyses in this paper, so we have

TLOD = log10

(∏d
i=1 fm,ν= f̂ (xi )∏d
i=1 fm,ν=0(xi )

)
. (12)

The log posterior odds is the log likelihood ratio (TLOD)
plus the log prior odds, so the posterior odds in favor of the
alternate hypothesis for a given substitution type is

P(m, ν = f̂ )

1 − P(m, ν = f̂ )
= 10TLOD+logit10(p(Sm,c)). (13)

Here p(Sm, c) is the prior probability of a substitution of
type Sm, c, as described in equation (6) and specified in equa-
tions (9)–(11). When comparing our posterior odds to those
of MuTect, we assume a uniform per-base probability of
mutation of 3 · 10−6 (10), so

PMuTect(m, ν = f̂ )

1 − PMuTect(m, ν = f̂ )
= 10TLOD−6. (14)

Implementation

We have implemented the BATCAVE algorithm as an R
package called batcaver. The package leverages the Bio-
conductor packages BSgenome (41), GenomicAlignments
(42), VariantAnnotation (43), and SomaticSignatures (44)
for fast and memory-efficient variant annotation and ge-
nomic context identification. Reference sequences are spec-
ified as BSgenome objects, allowing efficient access to ge-
nomic context information.

An assumption of the BATCAVE algorithm is that the
mutation profile of low-confidence mutations is similar to
that of the high-confidence mutations from which the prior
is inferred. To test this assumption, batcaver performs
a statistical hypothesis test comparing these two muta-
tion profiles (45). If the two profiles differ at a significance
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Figure 2. Simulated tumor mutation profiles. As in Figure 1, in each panel
the x-axis corresponds to each of the 96 possible mutation types, and the
y-axis is the proportion of total mutations of each type. (A) A mutation
profile used for simulating tumors, made up of equal proportions of COS-
MIC mutation signatures 1, 7 and 11. (B) Equal proportions of signatures
1, 4 and 5. (C) Equal proportions of signatures 1, 3 and 5.

threshold of � = 0.05, batcaver issues a warning and out-
puts the profiles.

Tumor simulations

We used a neutral branching process with no death and μ =
3 · 10−6 to simulate realistic distributions of mutation fre-
quencies. Tumors were simulated with three different mu-
tation profiles composed of COSMIC mutation signatures
(version 2) (46). Each simulated profile includes COSMIC
signature 1, which is found in nearly all tumors and is asso-
ciated with spontaneous cytosine deamination. The ‘Con-
centrated’ profile (Figure 2A) is an equal combination of
COSMIC signatures 1, 7,and 11, which has a large percent-
age of C > T substitutions such as are often seen in can-
cers caused by UV exposure (47). The ‘Intermediate’ pro-
file (Figure 2B) is an equal combination of COSMIC sig-
natures 1, 4 and 5, which has been associated with tobacco
carcinogens and is representative of some lung cancers (47).
The ‘Diffuse’ profile (Figure 2C) is an equal combination
of COSMIC signatures 1, 3, and 5, which has been associ-
ated with inactivating germline mutations in the BRCA1/2
genes leading to a deficiency in DNA double strand break
repair (32). Simulated variants were sampled from a com-
bination of the Cancer Genome Atlas (TCGA) and Pan-
Cancer Analysis of Whole Genomes (PCAWG) databases,
which include mutations found in all types of cancer. Whole
genome (100× depth) and whole exome (500X depth) reads
were simulated from the GRCh38 reference genome using
VarSim (48) and aligned with BWA (49), both with default
parameters. Variants were inserted to create tumors with
BAMSurgeon with default parameters (50) and called with
MuTect 1.1.7 (10) with the following parameters:

java -Xmx24g -jar $MUTECT JAR
--analysis type MuTect --
reference sequence $ref path --dbsnp
$db snp --enable extended output
--fraction contamination 0.00
--tumor f pretest 0.00 --
initial tumor lod -10.00 --
required maximum alt allele mapping quality score
1 --input file:normal $tmp normal -
-input file:tumor $tmp tumor --out
$out path/$chr.txt --coverage file
$out path/$chr.cov.

Variants identified by MuTect are labeled as to whether
they pass all filters, fail to pass only the the evidence thresh-
old tlod f star filter, or fail to pass any other filter. Variants
that passed all filters or failed only tlod f star were then
passed to BATCAVE for prior estimation and rescoring.

Calibration metric

To quantify the difference in calibration between MuTect
and BATCAVE, we used the Integrated Calibration Index
(51). Briefly, a loess-smoothed regression was fit by regress-
ing the binary (True=1, False=0) true variant classification
against the reported posterior probability for both MuTect
and BATCAVE. For a perfectly calibrated caller, the regres-
sion fit would be the diagonal line y = x. The Integrated
Calibration Index is a weighted average of the absolute dis-
tance between the calibration curve and the diagonal line of
perfect calibration.

Real data

We analyzed two real datasets, one from an acute myeloid
leukemia (AML) (52) and one from a multi-region sequenc-
ing experiment in breast cancer (4). We downloaded the
normal and primary whole-genome AML tumor bam files
from dbGaP accession number phs000159.v8.p4. Griffith
et al. generated a platinum set of variant calls for this tu-
mor (52), which we used for our true positive dataset. We
downloaded the normal and tumor whole-exome breast
cancer bam files from NCBI Sequence Read Archive acces-
sion SRP070662. Griffith et al. estimated the purity of their
primary sample to be 90.7%, and we used this value for tu-
mor purity in batcaver. Shi et al. generated a gold set of
variant calls for each tumor region sequenced (4), which we
used for our true positive dataset. For these multi-region
data, we analyzed the three biological replicates from each
of six tumors (Table 1), running BATCAVE separately on
each of the eighteen samples, and we combined results to
generate precision-recall curves. Shi et al. estimated sample
purities of between 26 and 80%, and we used these estimates
in batcaver. We called variants using Mutect 1.1.7 as in
our simulations, except that both these datasets were origi-
nally aligned to GRCh37, so we used that reference.

RESULTS

We implemented BATCAVE as a post-call variant evalua-
tion algorithm to be used with MuTect (Versions 1.1.7 or
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Table 1. Variant calling metrics for all datasets

AUROC AUPRC ICI

Scenario Mutation profile � (estimated) MuTect BATCAVE MuTect BATCAVE MuTect BATCAVE

100× whole genome Concentrated 3.6e-7 0.987 0.993 0.972 0.975 0.117 0.287
100× whole genome Intermediate 3.2e-7 0.987 0.989 0.972 0.973 0.118 0.214
100× whole genome Diffuse 3.2e-7 0.988 0.989 0.971 0.973 0.120 0.219
500× whole exome Concentrated 3.6e-7 0.848 0.929 0.674 0.758 0.138 0.109
500× whole exome Intermediate 3.6e-7 0.847 0.881 0.677 0.706 0.108 0.112
500× whole exome Diffuse 3.6e-7 0.850 0.873 0.676 0.698 0.105 0.116
real AML (52) Actual 3.6e-8 0.996 0.988
real breast (4) Actual 6.6e-7 0.972 0.968

� = per-base mutation rate, AUROC/AUPRC = Area Under Receiver Operating Characteristic/Precision-Recall Curve, ICI = Integrated Calibration
Index. Smaller values of ICI are superior.

>2.0) (10). BATCAVE extracts the log-likelihood ratio for
each potential variant site from the MuTect output, and
then it uses that ratio to separate the potential sites into high
and low confidence groups. The mutation profile and muta-
tion rate are estimated from the high confidence sites, and
the posterior probability of mutation is then recomputed for
all sites. The BATCAVE algorithm is inexpensive, process-
ing 22 000 variants per second on a typical desktop com-
puter, which corresponds to roughly 100 s to process a 500×
exome and 2000 s for a 100× whole genome.

To test the performance of BATCAVE, we generated
six different tumor/normal pairs, corresponding to 100X
whole genomes and 500X whole exomes for three differ-
ent mutation profiles. The three mutation profiles were cho-
sen to resemble a melanoma (concentrated), a lung can-
cer (intermediate), and a BRCA-driven breast cancer (dif-
fuse) (Figure 2). We also tested BATCAVE using two real
cancer datasets, a whole-genome Acute Myeloid Leukemia
(AML) (52) and a whole-exome multi-region breast can-
cer (4). In both, deep sequencing and variant valida-
tion were performed with the specific purpose of evaluat-
ing tumor variant calling pipelines. Because our focus is
on evaluating the statistical calling model, we computed
all test metrics using only those potential variants that
passed MuTect’s heuristic filters and entered the statistical
model.

Tests using simulated data

To improve variant identification, the context-dependent
prior probability of mutation must converge to an accurate
representation of the data generating distribution within the
set of high-confidence mutations. When applied to simu-
lated data, the prior converged within a few hundred muta-
tions (Figure 3), and the batcaver package emits a warn-
ing if there are fewer than 500 high-confidence mutations.
For comparison, in our simulated datasets the number of
high-confidence mutations ranged between 1500 and 5000,
and in the real AML we test on it is over 17 000 (52).

We assessed classification performance using the areas
under both the receiver operating characteristic and the
precision-recall curves, because the classes are unbalanced
(∼5 to 1 ratio of false to true variants in our simulated
data). By both metrics BATCAVE outperforms MuTect
(Figure 4A-B, Supplementary Figure S1A-B and Table 1).
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Figure 3. Convergence of the mutational prior to the data generating dis-
tribution. Plotted is the Kullback–Leibler divergence between the simu-
lated and estimated profiles versus number of incorporated mutations for
whole exomes. Convergence for whole genomes is similar.

The extent of the performance difference is dependent on
both the sequencing depth and the concentration of the mu-
tation profile. Deeper sequencing and more concentrated
mutation profiles increase the performance advantage of
BATCAVE.

For all simulated tumors, the estimated mutation rate was
∼3 · 10−7 (Table 1), which is lower than the simulated rate
of 3 · 10−6. This is likely due to restrictions within BAM-
Surgeon, such as sequencing depth and quality, that pre-
vent 100% of simulated variants from being inserted into
the reads.

We also assessed calibration, the likelihood that a poten-
tial variant with a given posterior probability is actually a
true variant. We measured overall calibration performance
using the Integrated Calibration Index (ICI) (51), which
integrates the difference between predicted and observed
probabilities, weighted by the density of the predicted prob-
abilities. This metric is particularly useful in our case, be-
cause the density of posterior probabilities is bi-modal (Fig-
ure 4C-D and Supplementary Figure S1C-D). A large frac-
tion of true negative variants have posterior probabilities
less than 10−4, far below any meaningful threshold, so we
evaluated calibration only on potential variants with poste-
rior probability >0.01. For these potential variants, BAT-
CAVE tends to increase posterior probabilities of low prob-
ability but true variants (density curves in Figures 4C-D and
Supplementary Figure S1C-D) while decreasing probabili-
ties of low probability but false variants. For 500× exomes,
the calibration of BATCAVE is better than MuTect across
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Figure 4. Variant-calling performance on simulated and real data. Throughout, MuTect results are plotted with gray lines and BATCAVE results with black
lines. (A) Precision-recall curves and (B) receiver operating characteristic curves for different mutation profiles. (C and D) Calibration plots. Shaded regions
show distributions of posterior probabilities for true positive variants, and smooth lines show loess-smoothed relationships, from which the Integrated
Calibration Index is calculated. For a perfectly calibrated caller, those curves would match the dashed y=x line. (E and F) Precision-recall curves for real
data in which substantial mutation validation was performed (4,52).

the full spectrum of posterior probabilities (Figure 4 and
Table 1). For 100× whole genomes, the calibration of BAT-
CAVE is slightly worse (Supplementary Figure S1 and Ta-
ble 1), likely because there are few low probability true pos-
itive variants in tumors sequenced to 100× depth. As with
the other metrics, the advantage of BATCAVE increases
with the concentration of the mutation profile and the se-
quencing depth.

In practice, variant callers are typically used with a
threshold score above which a variant is called. The user’s
choice of threshold ideally meets their need to balance pre-
cision and recall; accurate posterior probability estimates
enable an informed choice. For posterior probability thresh-
olds between 60 and 90%, the precision of BATCAVE calls
is similar to the chosen threshold (Figure 5 and Supplemen-
tary Figure S2). For this range of thresholds, however, the
posterior probabilities from MuTect poorly predict preci-
sion (Figure 5 and Supplementary Figure S2). For any pos-
terior probability threshold above 70%, MuTect has a false
positive rate of roughly 8%, whereas BATCAVE has a false
positive rate that decreases as the threshold increases. The
cost of MuTect’s compressed range of posterior probabil-
ities is recall; at any posterior probability threshold BAT-
CAVE has recall better than MuTect. Consequently, BAT-
CAVE posterior probabilities are more informative than
MuTect’s with regard to choosing a calling threshold.
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Figure 5. Posterior probability calibration for realistic calling thresholds,
for 500× exomes. Plotted is precision and recall for variants identified using
various realistic posterior probability thresholds. At these thresholds, the
precision of BATCAVE is much closer to the given threshold than MuTect,
no matter the concentration of the mutation profile.

Tests using real tumor data

We tested BATCAVE using two datasets for which deep
sequencing and variant validation were performed with
the express purpose of evaluating tumor variant calling
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