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The inbreeding model is implemented in the Python package @a@i, which is available on Bitbucket (https://bitbucket.org/gutenkuns
tlab/dadi; last accessed February 26, 2020). Code for generating and analyzing simulated and empirical data sets from this article is
available on GitHub (https://github.com/pblischak/inbreeding-sfs; last accessed February 26, 2020). The “bbc-shiny/” folder in the
GitHub repository also contains a small R Shiny application for plotting the probability mass function of the n-fold convolution of beta-
binomials with different sample sizes, allele frequencies, and inbreeding coefficients.

Abstract

Demographic inference using the site frequency spectrum (SFS) is a common way to understand historical events
affecting genetic variation. However, most methods for estimating demography from the SFS assume random mating
within populations, precluding these types of analyses in inbred populations. To address this issue, we developed a model
for the expected SFS that includes inbreeding by parameterizing individual genotypes using beta-binomial distributions.
We then take the convolution of these genotype probabilities to calculate the expected frequency of biallelic variants in
the population. Using simulations, we evaluated the model’s ability to coestimate demography and inbreeding using one-
and two-population models across a range of inbreeding levels. We also applied our method to two empirical examples,
American pumas (Puma concolor) and domesticated cabbage (Brassica oleracea var. capitata), inferring models both with
and without inbreeding to compare parameter estimates and model fit. Our simulations showed that we are able to
accurately coestimate demographic parameters and inbreeding even for highly inbred populations (F¼ 0.9). In contrast,
failing to include inbreeding generally resulted in inaccurate parameter estimates in simulated data and led to poor
model fit in our empirical analyses. These results show that inbreeding can have a strong effect on demographic
inference, a pattern that was especially noticeable for parameters involving changes in population size. Given the
importance of these estimates for informing practices in conservation, agriculture, and elsewhere, our method provides
an important advancement for accurately estimating the demographic histories of these species.
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Introduction
Estimating the demographic history of closely related popu-
lations or species is an important first step in understanding
the interplay of the evolutionary forces shaping genetic var-
iation. Divergence, migration, changes in population size, and
other historical events all contribute to population allele fre-
quency dynamics over time, a process that can be modeled
using a variety of approaches. Connecting the expectations
from these models with observed genomic data is often
achieved using the site frequency spectrum (SFS), a
genome-wide summary of genetic polymorphism within
and between populations (Sawyer and Hartl 1992; Adams
and Hudson 2004; Caicedo et al. 2007; Gutenkunst et al.
2009; Nielsen et al. 2009). The ease and affordability of collect-
ing genomic SNP data make inferences of demography using
the SFS especially appealing, highlighting their importance in
gaining insights into the historical factors affecting neutral
variation in populations. Several recent analyses have also
applied SFS-based methods to infer the fitness effects of

mutations (Kim et al. 2017; Tataru et al. 2017; Fortier et al.
2019), allowing researchers to model patterns of selection
while simultaneously controlling for demography
(Williamson et al. 2005).

Generating the SFS from a demographic model is a well-
studied problem with several possible approaches, all based
on different underlying methodologies, currently imple-
mented (e.g., diffusion, Gutenkunst et al. 2009; spectral meth-
ods, Luki�c and Hey 2012; the coalescent, Excoffier et al. 2013;
moment closure, Jouganous et al. 2017). However, these
methods generally assume panmixia or random mating
within populations, which may not be a realistic assumption
for many groups of organisms that are inbred. The reason for
this assumption is that the approximations used by these
approaches are all built on top of the Wright–Fisher model
and rely on the simplicity of its binomial sampling scheme for
deriving expectations. The excess of homozygosity caused by
inbreeding deviates from binomial expectations, leading to
changes in the observed SFS that cannot be captured by
models assuming random mating that may affect estimates
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of demography. Generalizations of the standard Wright–
Fisher model have been made to include inbreeding through
partial self-fertilization (Wright 1951). Nevertheless, these
modifications have yet to be implemented in SFS-based
methods for demographic inference.

Despite this lack of available SFS-based methods, previous
approaches to infer demography from inbred samples have
successfully used alternative representations of genomic data
to capture the extent to which samples share blocks of their
genome through nonrandom mating. This typically entails
identifying parts of the genome that are identical by descent
(IBD), or that contain runs of homozygosity, and using the
length and distribution of these blocks to infer levels of in-
breeding and past population size dynamics (Kirin et al. 2010;
Kardos et al. 2017; Browning et al. 2018). Large IBD blocks are
usually an indication of recent inbreeding, whereas the fre-
quency and distribution of smaller IBD blocks, which are
shared due to common ancestry rather than inbreeding, con-
tain information about more long-term trends in population
size (Kirin et al. 2010; Ceballos et al. 2018). However, these
methods are generally only used to model size changes in
single populations, which do not allow them to estimate
other important demographic events such as population di-
vergence or rates of gene flow. Furthermore, the reliance of
these methods on fully sequenced genomes prevents them
from being used in systems that lack such resources.

The ability to estimate demography in organisms that do
not have a reference genome is a strength of SFS-based meth-
ods. This flexibility allows researchers using reduced represen-
tation methods (e.g., restriction enzyme-based approaches)
to collect genomic data for demographic inference. A large
motivating factor for the work that we have conducted here
is to understand demography in domesticated crop species,
which are often highly inbred due to how they are bred and
propagated (Gaut et al. 2018). Inbreeding is also of great
concern in threatened and endangered species (Shafer et al.
2015; Xue et al. 2015; Robinson et al. 2016, 2019). For many of
the most economically or ecologically important species in
these categories, full-genome sequences are typically available
and can be used to guide estimates of genetic variation and
past population dynamics that will help to inform breeding
practices or management strategies, respectively. However,
for less well-studied agricultural or threatened species, it is
crucial to have tools available that can also provide this es-
sential information without necessarily needing to obtain a
fully sequenced genome.

In this article, we introduce a new method for including
inbreeding in estimates of demography by modifying the
sampling distribution used to generate the expected SFS for
a given demographic model. We have implemented the ap-
proach in the Python package @a@i (Gutenkunst et al. 2009),
building on top of its existing machinery for estimating de-
mography using the diffusion approximation. To assess our
ability to coestimate inbreeding and demography, we gener-
ated frequency spectra in both @a@i and SLiM (Haller and
Messer 2019) and used the new model to make inferences

from these simulated data. We also used simulated frequency
spectra from @a@i to see how inbreeding affects estimates of
demography when it is ignored. Finally, we used genomic data
from two empirical examples, American pumas (Puma con-
color) and domesticated cabbage (Brassica oleracea var. cap-
itata), and evaluated estimates of their demographic histories
both with and without inbreeding. In general, our model is
shown to be accurate even for highly inbred populations
(F¼ 0.9). We also found that failing to account for inbreeding
leads to inaccurate estimates of parameters and poor model
fit. Taken together, the model we have developed provides a
powerful tool to jointly estimate inbreeding and demography,
and will help to facilitate evolutionary inferences in a wide
range of species.

New Approaches
We start with a brief overview of the SFS and describe its
derivation from the population distribution of allele frequen-
cies (DAF), which can be obtained using the diffusion approx-
imation as described previously (Gutenkunst et al. 2009). We
then propose a probability model for calculating the number
of derived mutations in an inbred population and provide an
expression for the expected SFS incorporating this distribu-
tion. Using this expression for the expected SFS with inbreed-
ing, we can perform parameter inference with a composite
likelihood assuming a Poisson random field model (Sawyer
and Hartl 1992).

The Site Frequency Spectrum
The SFS is a multidimensional summary of genetic variation
within and across populations that records how often derived
biallelic variants of different frequencies are observed in a
sample of individuals. For example, given a sample of 20
chromosomes (10 diploid individuals) from three popula-
tions, the SFS entry at index [3,8,17] records how often we
observe a variant in 3, 8, and 17 out of the 20 chromosomes in
populations one, two, and three, respectively. In general, for P
populations with sample sizes n1; n2; . . . ; nP, we index the
SFS using ½d1; d2; . . . ; dP� to record how often we observe a
variant with frequency d1; d2; . . . ; dP in populations one
through P.

The observed SFS can be obtained from empirical data by
tabulating derived SNP frequencies across sampled popula-
tions to generate the P-dimensional array described earlier.
When a derived allele cannot be determined, we can instead
record the frequency of the minor allele, effectively “folding”
the spectrum in half by only considering the variants with
frequency <0.5. Demographic inference can then be con-
ducted by comparing the observed SFS with the SFS obtained
from a demographic model (Sawyer and Hartl 1992).

Given the P-dimensional DAF obtained from a given de-
mographic model, /, the expected SFS can be obtained by
calculating the probability of drawing d1; . . . ; dP derived
alleles while integrating across the DAF in the populations.
Within each population, the number of derived alleles has a
binomial distribution under panmixia. We then integrate
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across all possible allele frequencies, weighting the binomial
probability of drawing di derived alleles by the density deter-
mined by / within population i. Taking this P-dimensional
integral across the weighted product of binomial probabilities
gives us the expression for the joint expected SFS:

E½d1; . . . ; dP� ¼
ð1

0

� � �
ð1

0

Y
i¼1;...;P

ni

di

� �
xdi

i ð1� xiÞni�di

/ðx1; . . . ; xPÞdxi:

(1)

The Expected SFS with Inbreeding
Through its use of binomial sampling, the preceding deriva-
tion for the expected SFS makes the assumption that matings
within populations are random. When inbreeding has oc-
curred, individual genotypes are more likely to be homozy-
gous due to being IBD. One way to capture this excess in
homozygosity is to incorporate the inbreeding coefficient F
into a generalized form for the expected genotype frequencies
under Hardy–Weinberg equilibrium (Wright 1951). Here, we
use an alternative model that captures the fact that geno-
types within populations will be correlated due to inbreeding,
pushing the distribution of genotypes toward homozygotes.
To capture this correlation among genotypes, Balding and
Nichols (1995, 1997) proposed a probability model to incor-
porate inbreeding using a beta-binomial distribution. Under
this model, individual genotypes are a random variable,
Gi 2 f0; 1; 2g, for the number of copies of the derived allele
in individual i (i ¼ 1; . . . ; n) such that PrðGi ¼ gÞ at an in-
dividual locus with allele frequency p 2 ð0; 1Þ and popula-
tion inbreeding coefficient F 2 ð0; 1Þ is beta-binomial with
the following form:

PrðGi ¼ gjp; FÞ

¼ BB g; a ¼ p
1� F

F

� �
; b ¼ ð1� pÞ 1� F

F

� �� �

¼ 2
g

� �
Bðg þ a; 2� g þ bÞ

Bða; bÞ :

(2)

Here, BB denotes the probability mass function for the
beta-binomial distribution and B(x, y) is the beta function
with dummy parameters x and y. The parameterization of
a ¼ p 1�F

F

� �
and b ¼ ð1� pÞ 1�F

F

� �
introduces the overdis-

persion of probability toward homozygous genotypes that is
expected as inbreeding increases (Balding and Nichols 1995,
1997).

To get the expected SFS, we need to be able to model the
total number of derived alleles sampled in the population,
which is the sum across the genotypes of all individuals. Given
a sample of n diploid individuals (2n chromosomes), we use
the random variable D 2 f0; . . . ; 2ng to denote this quan-
tity. The probability mass function for D is an n-fold convo-
lution of beta-binomial distributions, which do not have a
simple distributional form. However, we can obtain the prob-
ability mass function by considering all possible combinations
of the probability of drawing D¼ d alleles across n beta-
binomial distributions, giving us a closed form expression
for the convolution of n beta-binomial random variables:

PðD ¼ djp; FÞ

¼ BB�n d; a ¼ p
1� F

F

� �
; b ¼ ð1� pÞ 1� F

F

� �� �

¼
X

R2pnðdÞ

n!

n0!n1!n2!

Y
r2R

BBðr; a;bÞ
� �

:

(3)

Breaking this down, we can think of it as enumerating all
possible ways to generate genotypes in n individuals such that
they sum to d, times the beta-binomial probability of sam-
pling each genotype. More specifically, let pnðdÞ be an array of
integer partitions with n entries that sum to d such that all
entries in the partition are 0, 1, or 2 (corresponding to the
possible genotype values). For example, the partitions defined
by p5ð4Þ are ½2; 2; 0; 0; 0�; ½2; 1; 1; 0; 0�, and ½1; 1; 1; 1; 0�.
Then, for each of these partitions, we use the multinomial
coefficient n!

n0!n1!n2!, with n0, n1, and n2 corresponding to the
number of partition entries equal to 0, 1, and 2, respectively,
to account for all possible rearrangements of the partition
entries. Next, we multiply the beta-binomial probability for
each genotype in a partition using equation (2). Taking the
product across all possible partitions gives us the full expres-
sion for the n-fold convolution, which we denote BB�n (� is
the mathematical operator for convolutions). Inserting this
distribution into equation (1) gives us the final form for the
expected SFS with inbreeding:

EF½d1; . . . ; dP� ¼ð1

0

� � �
ð1

0

Y
i¼1;...;P

BB�ni
di; xi

1� Fi

Fi

� �
; ð1� xiÞ

1� Fi

Fi

� �� �

/ðx1; . . . ; xPÞdxi:

(4)

We have written a small R Shiny application illustrating the
probability distribution for the beta-binomial convolution
(available on GitHub). Figure 1 also shows a sample of exam-
ple frequency spectra for different levels of inbreeding.

Results

Comparison with SLiM
We used SLiM (Haller and Messer 2019) to validate the
expectations of the SFS with inbreeding by simulating fre-
quency spectra under three models (described in more detail
in Simulations below): a simple equilibrium model (standard
neutral model), a one-population bottleneck and growth
model, and a two-population divergence and one-way migra-
tion model. Inbreeding was assumed to occur through selfing
and expected frequency spectra were obtained by taking the
mean of 5,000 simulations for each model. Figure 1 plots the
comparison between the SFS obtained from @a@i and SLiM
for the equilibrium and bottleneck models with F¼ 0.5, 0.75,
and 0.9, respectively. The frequency spectra for these models
for F¼ 0.1 and F¼ 0.25 are presented in supplementary figure
S1, Supplementary Material online and the comparisons for
the two-population divergence model are in supplementary
figure S2, Supplementary Material online. The percent differ-
ences between the frequency spectra from @a@i and SLiM
were between 0.1% and 0.2% for the one-population models
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and were between 0.02% and 0.03% for the two-population
model, demonstrating that our results from modeling the
expected SFS with beta-binomial distributions corresponds
well with the spectra simulated from SLiM.

We also used simulated frequency spectra from SLiM to
estimate parameters for these three models in @a@i. Figure 2
shows the distribution of estimated inbreeding coefficients
for the bottleneck and growth model (root mean-squared
deviation [RMSD]¼ 0.094) and divergence and one-way mi-
gration models (RMSD ¼ 0.163). Similar plots for all other
estimated parameters across all three models are presented in
supplementary figures S3–S5, Supplementary Material online.

Simulations
Simulation 1: Coestimating Inbreeding and Demography
To assess our ability to estimate demographic parameters
under increasing levels of inbreeding (F¼ 0.1, 0.25, 0.5, 0.75,
and 0.9), as well as the inbreeding coefficient within a popu-
lation itself, we performed demographic inference using sim-
ulated frequency spectra under three models: 1) a standard
neutral model, 2) a one-population bottleneck and growth
model, and 3) a two-population divergence model with uni-
directional gene flow (models two and three are illustrated in
fig. 2). For the standard neutral model, the inbreeding coeffi-
cient is the only parameter that needs to be estimated. The
one-population bottleneck and growth model has three
parameters: the inbreeding coefficient, the relative size of
the bottlenecked population (�0 ¼ 0.1, 0.25, and 0.5), and
the recovery time back to the original size (T¼ 0.1, 0.2, and
0.3). The two-population model has four parameters: the in-
breeding coefficient, the relative size of the diverging popula-
tion (�2¼ 0.1, 0.25, 0.5), the time of divergence from the main
population (T¼ 0.1, 0.2, and 0.3), and the rate of gene flow
from the main population into the diverged population

(M21 ¼ 0.5, 1.0, and 1.5). All parameters are specified relative
to the ancestral population size, which in @a@i defaults to 1.0.

Supplementary figures S6–S8, Supplementary Material on-
line, show the distribution of estimated inbreeding coeffi-
cients across 20 replicate experiments for every
combination of simulation parameters for the equilibrium,
bottleneck, and divergence models. For all three models, we
are able to recover accurate estimates of F (Model 1 RMSD:
0.0139; Model 2 RMSD: 0.0176; Model 3 RMSD: 0.0406) even
when inbreeding is quite high (F¼ 0.9). Supplementary figure
S7, Supplementary Material online, also shows plots for esti-
mates of bottleneck size and recovery time across inbreeding
levels for model two. The RMSD values for these estimates
across all simulated values were 0.0236 and 0.0184 for �0 and
T, respectively. Supplementary figure S8, Supplementary
Material online, shows similar plots for estimates of popula-
tion size, divergence time, and one-way migration rate across
inbreeding levels for model three. The RMSD values for these
estimates across all simulated values were 0.0131 for �2,
0.0103 for T, and 0.158 for M21.

Simulation 2: Parameter Estimation When Inbreeding Is

Ignored
To understand the impact of ignoring inbreeding on demo-
graphic inference, we simulated data sets with inbreeding
under the same bottleneck and divergence models as above
(models two and three) but performed inference under the
assumption that inbreeding was absent. Because of initial
issues with convergence in these analyses, particularly with
the bottleneck model, and the fact that higher levels of in-
breeding cause increasingly conspicuous changes to the SFS
(e.g., see fig. 1), we used a smaller range for F in these simu-
lations: 0.1, 0,2, 0.3, 0.4, and 0.5.

FIG. 1. Comparison of expected spectra for F¼ 0.5, 0.75, and 0.9 between @a@i (dark gray) and SLiM (light gray) for the equilibrium and
bottleneckþgrowth models.
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Parameter estimates for the bottleneck model had higher
rates of error compared with when inbreeding was directly
modeled. The RMSDs for �0 and T were 0.191 and 0.117, re-
spectively. Estimates of these parameters also got worse as
inbreeding increased (supplementary fig. S9, Supplementary
Material online), clearly demonstrating the issues that can arise
when inbreeding is ignored. In contrast, results for the diver-
gence model were surprising in that they did not show the
high levels of estimation error seen with the bottleneck model
(supplementary fig. S10, Supplementary Material online). The
RMSD values for the parameters of the divergence model were
0.0261 for �2, 0.0130 for T, and 0.142 for M21. Interestingly, the
RMSD for M21 was actually lower in this simulation experi-
ment than when inbreeding was modeled (0.158). However,
the increase in RMSD for the simulations where inbreeding is
modeled is due to using higher levels of inbreeding (F> 0.5). If
we restrict the calculation of RMSD in the estimates including
inbreeding to only those with F � 0:5, the RMSD is lower
than when inbreeding is ignored, as expected (0.109). RMSD
values for �2 and T were higher for model two than in
Simulation 1, indicating that these parameters may be more
sensitive to the effects of unmodeled inbreeding.

Simulation 3: Masking Rare Variants
Several techniques to “side-step” the impact of inbreeding
have been taken in empirical analyses. This includes sampling
only a single haplotype/chromosome per individual (e.g.,
Beissinger et al. 2016; Koenig et al. 2019) or masking rare
variants (e.g., Cornejo et al. 2018), which are disproportion-
ately affected at lower levels of inbreeding (fig. 1). One obvi-
ous effect of sampling only a single chromosome is that it cuts
the sample size in half. However, both Pollak (1987) and
Nordborg and Donnelly (1997) have described results for
the diffusion and coalescent processes from a sample of single
chromosomes, respectively, showing that inbreeding simply
rescales the rate of these processes. The more important re-
sult of sampling a single chromosome per individual is that it
discards information about levels of homozygosity, prevent-
ing us from being able to jointly estimate the level of inbreed-
ing during a demographic analysis. Because of this, and the
fact that investigations on the effect of sample size on demo-
graphic inference have already been explored (Robinson et al.
2014), we instead focused on the effect of masking rare var-
iants under increasing levels of inbreeding. For the bottleneck
model, we masked the singleton and doubleton entries of the

(a) (b)

FIG. 2. (a) Estimates of F from data generated with SLiM for the bottleneck and growth model (lower) plus an illustration of the model (upper). In
this model, NA is the ancestral population size, �0 is the size of the bottleneck (proportion of NA remaining after population reduction), and T is the
amount of time for the population to recover back to a size of NA. (b) Estimates of F from data generated with SLiM for the divergence with one-way
migration model (lower) plus an illustration of the model (upper). NA in this model is the same as the bottleneck model, �2 is the size of the
diverging population (again a proportion of NA), T is the divergence time between populations, and M21 is the one-way migration rate of
individuals from population one into population two.
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1D-SFS, and for the divergence model, we masked the bottom
corner of the 2D-SFS (i.e., singletons, doubletons, and their
combinations across both populations). We then used the
same range of parameters as in the previous simulations to
see how much masking affected our inferences.

For the bottleneck and growth model, data masking had a
small but noticeable effect on parameter estimation. The
bottleneck size was estimated with less accuracy compared
with when inbreeding was included (RMSD ¼ 0.0296) and
estimates of recovery time also had higher error (RMSD ¼
0.0218), typically in the direction of underestimation (supple-
mentary fig. S11, Supplementary Material online). The effect
of masking was more pronounced in the divergence model
(supplementary fig. S12, Supplementary Material online), par-
ticularly for the migration parameter, where the amount of
gene flow was almost always underestimated across all pa-
rameter combinations (RMSD ¼ 0.193). Estimates of popu-
lation size and divergence time were also slightly
underestimated when compared with models including in-
breeding (RMSD ¼ 0.0122 and 0.0103, respectively), but the
effect was less pronounced.

Simulation 4: Misspecified Inbreeding
As a final test of the model for inbreeding, we simulated
frequency spectra under the bottleneck and divergence mod-
els without inbreeding but included it as a parameter to be
estimated. The expectation in this case is that inbreeding
should be estimated close to 0 and that its inclusion in the
model does not lead to poor estimates of other model param-
eters. However, for both models, the inbreeding parameter
was always estimated to be >0. The mean estimates of F for
the bottleneck and divergence models were 0.0934 and 0.212,
respectively. Nevertheless, despite not estimating an absence
of inbreeding, the other model parameters were estimated
with only slightly higher levels of error (supplementary figs.
S13 and S14, Supplementary Material online). For the bottle-
neck model, bottleneck size and duration had RMSD values of
0.0280 and 0.0268, respectively, which are both higher levels of
error than the simulations where inbreeding was truly pre-
sent. Parameters in the divergence model had RMSDs of
0.0183 for �2, 0.0110 for T, and 0.132 for M21, showing that
the two-population model was not strongly affected by the
level of inbreeding estimated in population two.

Empirical Examples
American Puma
The American puma (P. concolor) is an iconic carnivore dis-
tributed primarily in western North America and South
America, occupying a large diversity of habitats across its
range. However, in the eastern United States, the only rem-
nant population is the highly endangered Florida panther
(Hansen 1992; Culver et al. 2000). Florida panthers have
been the subject of large-scale conservation efforts aimed at
ameliorating the adverse effects of small population size, in-
cluding moving individuals from their closest sister popula-
tion, the Texas puma, to introduce novel genetic variation
(Seal and Lacy 1994; Johnson et al. 2010). Using genomic data

from five individuals of Texas pumas and two individuals of
“canonical” Florida panthers from Ochoa et al. (2019), we
estimated the demographic history of these two populations
to investigate their divergence time, changes in population
size, and levels of inbreeding (see cartoon in fig. 3). More
specifically, we fit a model that included an initial change in
population size to mimic the colonization of North America
by the Texas population (NTX), the duration of time spent at
the new population size (T1), the divergence time between
Texas pumas and Florida panthers (T2), and the inbreeding
coefficients for both the Texas and Florida populations (FTX

and FFL).
After processing (see Materials and Methods), 6,262,417

variant sites were retained for constructing the 2D-SFS.
Because we lacked a suitable outgroup for determining an-
cestral versus derived allelic states, we used the folded SFS for
all model fits. Table 1 lists parameter estimates and their 95%
CI for models fit with and without inbreeding (� ¼ 10�2) and
uncertainty estimates across different step sizes for numerical
differentiation using the Godambe information matrix
(Coffman et al. 2016) are presented in supplementary tables
S1 and S2, Supplementary Material online. In both models,
the Texas and Florida populations are estimated to have di-
verged 7,000–8,000 years ago, with both also having similar
estimates of the ancestral population size (120,000–130,000
individuals). As expected, the Florida population experienced
a severe reduction in population size down to 1,200–1,600
individuals, as well as having a high estimate of F in the model
including inbreeding (FFL ¼ 0.607). Texas pumas were also
inferred to be inbred, though less so than Florida panthers
(FTX ¼ 0.440). Estimates of population size for the Texas
population were different between the models with and with-
out inbreeding (70,800 individuals vs. 23,700 individuals) and
the duration of the initial population size change (T1) was
especially different as well (247,000 years vs. 26,800 years). The
log-likelihoods for the model with and without inbreeding are
�318,058.079 and �453,003.048, respectively, and the
Godambe-adjusted likelihood ratio statistic is 425.489 (P value
¼ �0.0; Coffman et al. 2016), demonstrating that the model
with inbreeding has a significantly better fit to the data. In
addition, when comparing the predicted SFS from the models
with the observed SFS (fig. 3), the residuals for the model with
inbreeding were lower overall, providing even more support
for preferring the model with inbreeding. Uncertainty esti-
mates were also typically more stable across step sizes for the
model with inbreeding.

Domesticated Cabbage
Brassica oleracea is an agronomically important plant species
cultivated primarily in Europe, Asia, and North America
(Maggioni 2015). It is especially well known for its morpho-
logical diversity, having been domesticated into several differ-
ent crops including broccoli, Brussels sprouts, cauliflower,
cabbage, kale, and kohlrabi, among others. The timing and
origin of domestication for these different B. oleracea crops
are still uncertain, but several hypotheses have been proposed
to explain their evolutionary history (Maggioni 2015).
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Cabbage, B. oleracea var. capitata, is thought to have been
domesticated roughly 500 years ago in the Mediterranean
region (Cheng, Sun, et al. 2016; Cheng, Wu, et al. 2016), pro-
viding an interesting hypothesis that we can test using de-
mographic models.

To infer the demographic history of domesticated cabbage,
we used SNP data from publicly available resequencing data
for 45 individuals from Cheng, Sun, et al. (2016) and Cheng,
Wu, et al. (2016). We then fit a demographic model for cab-
bage domestication that included two changes in population
size (N1 and N2), the amount of time spent at these popula-
tion sizes (T1 and T2), and the level of inbreeding (F) (see
cartoon in fig. 4). We used 2,941,018 intergenic SNPs to build
the folded SFS for B. oleracea var. capitata and fit models with
and without inbreeding. Parameter estimates were obtained
using newly implemented optimization routines in the @a@i

library built on top of the nlopt Python package (Johnson
2014). Parameter estimates and their 95% CI are listed in
table 2 (� ¼ 10�2). Uncertainty estimates across different
step sizes for numerical differentiation using the Godambe
information matrix (Coffman et al. 2016) are presented in
supplementary tables S3 and S4, Supplementary Material
online.

Much like the models inferred with and without inbreed-
ing for American pumas, the estimates of demography for
cabbage are markedly different between the two analyses.
When inbreeding was not modeled, we infer an ancestral
population size for cabbage of 19,100 individuals, which ex-
panded to a size of 123,000 individuals�6,000 years ago. This
expanded population then experienced a very recent and
severe bottleneck 38 years ago down to a size of 592 individ-
uals. The time estimate for the bottleneck consistently hits
the lower bound of the parameter search space, however,
suggesting that this estimate is likely not very reliable.
Parameter estimates for the inbreeding model inferred an
ancestral population size of 17,500 individuals, which ex-
panded to a size of 31,600 individuals �17,000 years ago.
This population then experienced an even larger expansion
to a size of 215,000 individuals 322 years ago. The model with
inbreeding inferred F to be 0.578, showing that inbreeding in
these cabbage samples is fairly high. The log-likelihoods for
the model with and without inbreeding were�4,281.145 and
�24,330.403, respectively, and the Godambe-adjusted likeli-
hood ratio statistic was 127.562 (P value ¼ �0.0; Coffman
et al. 2016). Figure 4 also shows the observed and predicted

FIG. 3. The observed joint site frequency spectrum for Puma concolor in Texas and Florida, along with the model fit and residuals, for models with
inbreeding (middle) and without inbreeding (right). Residuals for each model are plotted below their expected spectra and a cartoon represen-
tation of the proposed demographic model is given in the bottom left.

Table 1. Parameter Estimates for Puma concolor from Demographic
Models Estimated Both with and without Inbreeding.

Parameter Estimate with Inbreeding Estimate without Inbreeding

NA 130,000 (129,000–132,000) 120,000 (92,400–157,000)
NTX 70,800 (63,300–79,200) 23,700 (3,490–161,000)
NFL 1,600 (128–19,100) 1,210 (118–12,500)
T1 247,000 (169,000–359,000) 26,800 (504–1,420,000)
T2 7,820 (650–94,200) 8,230 (784–86,500)
FTX 0.440 (0.408–0.474) —
FFL 0.607 (0.588–0.626) —

NOTE.—95% CI is given in parentheses and was estimated using a step size of � ¼
10�2 for numerical differentiation. Population sizes are given in number of individ-
uals and divergence time is given in years.
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SFS for each model plus their residuals. The residual plots
clearly show that the model with inbreeding is able to capture
more of the “zig-zagging” pattern of the lower frequency
variants than the model without inbreeding, demonstrating
its overall better fit. Uncertainty estimates were again typically
more stable across step sizes for the model with inbreeding.

Discussion
The prevalence of inbreeding in nature, especially among
plant lineages and small and endangered populations, makes
it an important process to include in demographic models.
Unlike previous approaches that rely on full-genome sequen-
ces to characterize patterns of identity by descent or the
distribution of runs of homozygosity, our model uses the
frequency spectrum of biallelic SNPs to infer demography,
allowing it to be employed not only in model systems but
in organisms that lack a suitable reference genome as well.
The impact of inbreeding on the SFS has important conse-
quences for demographic inference, however, a result that is
well demonstrated by our simulations and example analyses.
The relationship between inbreeding and population size is
especially relevant for understanding inferences of past pop-
ulation dynamics. Below, we describe this connection in the
context of our simulations and the results of our empirical
analyses, drawing on previous theoretical work to help qualify
our results. We then discuss the importance of considering

how our current model behaves for recent versus sustained
inbreeding.

The Effects of Inbreeding on Estimates of Demography
Comparison with SLiM
In our analysis of frequency spectra from SLiM, we found a
high level of agreement between the expected SFS from the
diffusion approximation and beta-binomial model in @a@i
and the mean SFS from the three models we tested in
SLiM. In addition, we were generally able to get accurate
estimates for the parameters of the three models, though
there was a large amount of variation. Part of this is likely
driven by only simulating a 1-Mb region, which limits the
number of SNPs being used to build the SFS. A more impor-
tant contributor to the variation in parameter estimates is the
impact of inbreeding itself on the scaling of population-level
parameters such as h. Previous work in both the diffusion
(Pollak 1987) and the coalescent (Nordborg and Donnelly
1997; Nordborg 2000) frameworks has derived the appropri-
ate scaling of population-level parameters for inbred popula-
tions. In both cases, the equilibrium h of a randomly mating
population simply needs to be rescaled by 1þ F to obtain the
corresponding process with inbreeding (here inbreeding is
achieved through selfing). The same rescaling applies to
parameters estimated by @a@i when inbreeding is included,
so the appropriate scaling can be achieved by rescaling the
affected parameters by 1þ F using the estimated value of the
inbreeding coefficient.

Simulations with @a@i
From our more detailed simulation experiments, we were
able to characterize several scenarios where inbreeding ad-
versely affects inferences of demography. For the single-
population bottleneck model in particular, not accounting
for inbreeding had a dramatic impact on the accuracy of
estimated population size. The primary reason for this is
that inbreeding, much like population growth or contraction,
affects the low-frequency entries of the SFS in such a way that
these factors are likely confounded (fig. 1).

FIG. 4. The observed site frequency spectrum for Brassica oleracea var. capitata, along with the model fit (light gray) and residuals (bottom panels),
for models with inbreeding (middle) and without inbreeding (right). On the left is a cartoon of the proposed demographic model with parameters
labeled.

Table 2. Parameter Estimates for Brassica oleracea var. capitata from
Demographic Models Estimated Both with and without Inbreeding.

Parameter Estimate with Inbreeding Estimate without Inbreeding

NA 17,500 (16,900–18,100) 19,100 (18,500–19,800)
N1 31,600 (28,900–34,700) 123,000 (80,400–190,000)
N2 215,000 (4,910–9,370,000) 592 (547–641)
T1 16,600 (12,900–21,200) 5,870 (5,200–6,620)
T2 322 (94.2–1,097) 38.3 (32.5–45.1)*
F 0.578 (0.557–0.599) —

NOTE.—95% CI is given in parentheses and was estimated using a step size of � ¼
10�2 for numerical differentiation. Population sizes are given in number of individ-
uals and times are given in years. Parameters estimated at the upper/lower bound of
the given search space are marked with an asterisk (*).
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The result of ignoring inbreeding for the two-population
divergence with one-way migration model was much less
drastic (supplementary fig. S10, Supplementary Material on-
line), such that parameter estimates were often nearly as
accurate as when we included inbreeding in the model. It
should be noted that in this case the highest level of inbreed-
ing was F¼ 0.5, compared with the highest level in the
coestimating inbreeding simulations (F¼ 0.9). However,
the fact that the results did not show the same pattern of
extremely poor parameter inference as the one-population
model despite also having a bottleneck was noteworthy. One
possible explanation for this is that jointly modeling the de-
mography of the inbred, bottlenecked population with the
main, noninbred population provided more information in
the 2D-SFS to estimate parameters. Nevertheless, despite
having more overall accuracy than the one-population
model, parameter estimates in the two-population model
were increasingly underestimated with higher levels of in-
breeding, demonstrating its adverse effects even when in-
cluding a second panmictic species in the model.

The other two simulation experiments, masking rare var-
iants and misspecifying inbreeding, provide further examples
of the extent to which the variants with lowest frequency are
confounded with inbreeding in ways that affect demographic
inference. Masking the singleton and doubleton entries of the
1D- and 2D-SFS for the bottleneck and divergence models,
respectively, had only a small effect on estimates of popula-
tion size and the timing of demographic events, showing that
the signal for these inferences is also contained in the remain-
ing entries of the SFS. However, estimates of gene flow were
consistently underestimated in the divergence model, likely
due to the fact that the influx of migrant alleles at low fre-
quency were being masked. Simulations that modeled in-
breeding when it was absent provide a different view on
the inference of inbreeding and demography. In this case,
the inbreeding coefficient was inferred to be �0.1 and �0.2
in the one- and two-population models, respectively, even
though there was no inbreeding (supplementary figs. S13 and
S14, Supplementary Material online). The accuracy of the
remaining parameters was fairly high; however, there were
instances of certain parameter combinations leading to
over- and underestimation of the true parameter value.
Therefore, to prevent poor estimation of other parameter
values, it is advised that inbreeding be included in a model
only when there is an observable excess in homozygosity.

Results from Empirical Analyses
The impact of inbreeding on the results of our empirical
analyses demonstrates the importance of directly estimating
this parameter when inferring demography. Analyses with
and without inbreeding provided different estimates of pop-
ulation size and duration for Texas pumas and infer strikingly
different population size changes during the history of do-
mesticated cabbage. In the case of the American puma, our
estimates of population divergence time between Texas and
Florida, the timing of movement from South America into
North America, reductions in population size (especially for

the Florida population), and a high level of inbreeding in
Florida panthers are all consistent with previous work
(Culver et al. 2000; Ochoa et al. 2017, 2019).

The demographic history inferred for cabbage provides yet
another example of how inbreeding and population contrac-
tion can be confounded since estimates of current population
size without inbreeding were�600 individuals, an unrealistic
estimate given the prevalence of cabbage cultivation, as well
as the clear discrepancy between model fit and the observed
SFS for low-frequency variants (fig. 4). Including inbreeding,
however, provides a potentially revealing look into the do-
mestication history of cabbage, especially regarding the signal
for the textbook “domestication bottleneck” (Gaut et al.
2018). The expansion of the ancestral cabbage population
�17,000 years ago coincides with the end of glaciation in
Europe and, in particular, the Mediterranean region
(Hughes et al. 2006; Clark et al. 2009; Hughes and
Woodward 2017). Previous work has also placed the timing
of domestication for the cabbage morphotype of B. oleracea
at �500 years ago (Cheng, Sun et al. 2016), which roughly
agrees with the date that we estimated for the secondary
population expansion. This series of population expansions
differs quite conspicuously when compared with what is of-
ten expected for domesticated species (e.g., severe bottle-
necks; Doebley et al. 2006; Meyer and Purugganan 2013;
Gerbault et al. 2014; Gaut et al. 2018). Given the relatively
high inbreeding coefficient estimated for cabbage (F¼ 0.58),
and the fact that ignoring inbreeding led to inferences of a
very recent and severe bottleneck, it is possible that past
inferences of domestication bottlenecks have been partially
misled by the occurrence of inbreeding when inferring pop-
ulation dynamics.

Short- versus Long-Term Inbreeding
In a review on the effects of inbreeding, Charlesworth (2003)
discussed the temporal aspects of its impact on genetic di-
versity, distinguishing between the short-term consequences
on patterns of diversity (i.e., excess homozygosity compared
with panmixia) versus the long-term effects of inbreeding
that lead to an overall reduction in the effective size of the
population. The method we have introduced here is capable
of modeling inbreeding in both categories by not only fitting
the physical manifestation of inbreeding in the SFS (i.e., spik-
iness) but also by being able to appropriately scale the diffu-
sion process to account for the reduction in diversity caused
by inbreeding (hF ¼ h

1þF). The reduction in effective popula-
tion size, as well as the recombination rate, that inbreeding
causes has important consequences for the impact of selec-
tion and the rate of adaptation in inbred populations
(Charlesworth 1992; Hartfield and Glémin 2016; Hartfield
and Bataillon 2019). Therefore, studies aiming to identify
the targets of selection in inbred, nonequilibrium populations
must exercise special caution. This is especially relevant for
domesticated species and organisms of conservation concern,
whose evolutionary histories can often involve drastic
changes in population size. Moving forward, the joint infer-
ence of demography, inbreeding, and selection will be an
important advance for better understanding their collective
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contributions to genetic variation, as well as having poten-
tially large consequences on informing decision making in
agriculture and the designation of protection status for
threatened or endangered species.

Materials and Methods

Comparison with SLiM
Simulations to validate the expected SFS with inbreeding
were conducted using SLiM v3.3 (Haller and Messer 2019).
To include inbreeding, we set the selfing rate in SLiM to
s ¼ 2F=ð1þ FÞ, F¼ 0.1, 0.25, 0.5, 0.75, and 0.9, and con-
ducted 50 independent simulations, randomly sampling 25
individuals with replacement 100 times for each replicate, for
a total of 5,000 simulated spectra for each of three models: 1)
equilibrium/standard neutral model, 2) bottleneck and
growth model, and 3) divergence with one-way migration
model (models two and three are depicted in fig. 2). Each
simulation used h ¼ 4NALl ¼ 10; 000, with NA ¼ 1,000,
L ¼ 1� 106 bp, and l ¼ 2:5� 10�6. We also set the re-
combination rate, r, equal to the mutation rate. For all mod-
els, we simulated 10,000 generations of burn-in to allow the
ancestral population to reach equilibrium and included self-
ing from the start of the simulation for models one and two.
Individuals were sampled directly after this phase for the
standard neutral model. For model two, after burn-in, we
reduced the population size to 250 individuals and then
allowed the population size to recover exponentially back
to 1,000 individuals over 400 generations:
NðtÞ ¼ 250� 1;000

250

t
400. Model three started with an outcross-

ing equilibrium population, from which we split off a selfing
population with a size of 250 individuals. These two popula-
tions were then simulated forward for an additional 400 gen-
erations with the selfing population receiving migrants from
the original population at a rate of m21 ¼ 5� 10�4. At the
end of each simulation, individual genotype information was
exported in variant call format (VCF) and summarized using a
Python script to obtain the SFS (available on GitHub). The
expected SFS was then calculated by taking the mean value of
each entry of the simulated spectra across replicates for each
model and each value of the inbreeding coefficient. This sim-
ulation routine was also replicated to generate 20 indepen-
dent data sets for each model across the five levels of
inbreeding to infer parameters using @a@i v2.0.3
(Gutenkunst et al. 2009). Models were specified in Python
v3.7 using the parameterizations described earlier and
depicted in figure 2. Parameters were estimated for each sim-
ulated frequency spectrum using 100 optimization runs ini-
tiated from different random starting points. Parameter
estimates with the highest log-likelihood were then recorded
for comparison with the true simulated values using the
RMSD.

Because inbreeding rescales the effective population size by
a factor of 1þ F (Pollak 1987; Nordborg and Donnelly 1997),
and @a@i estimates parameters relative to the ancestral pop-
ulation size, we rescaled parameters in @a@i in the following
ways for the simulations above. For the standard neutral
model, we included selfing from the start of the simulation,

so for our comparison between SLiM and @a@i we divided
the original h of 10,000 by 1þ F. For the bottleneck and
growth models, the ancestral population was also inbred, so
we rescaled h by again dividing by 1þ F. The recovery time
for this model was always set to 400 generations in SLiM,
which in @a@i’s units would be equal to 0:2� 2NA.
Because the effective ancestral population size gets smaller
as inbreeding increases, we had to account for this by multi-
plying by a factor of 1þ F. However, when inferring param-
eters under this model, we have to rescale in the opposite
direction by dividing by 1þ F to get the correct estimate for
the number of generations relative to the ancestral popula-
tion size. Finally, for the divergence with one-way migration
model, the ancestral population is not inbred, so the only
rescaling that needs to be done is for the size of the diverged
selfing population (0.25 NA in @a@i units). When comparing
the expected SFS between @a@i and SLiM, we divide 0.25 by
1þ F to get the correct size for the inbred population. When
inferring parameters, we instead multiply by 1þ F to recover
the original 0.25 NA. In practice, it should be possible to esti-
mate models assuming an outcrossing ancestral population
and including a change in population size to account for the
effects of inbreeding.

Simulations
Simulations to explore a greater breadth of parameters were
conducted in Python 3.7 using functions available in the @a@i
library (v2.0.3). For each simulation experiment, we used the
same basic setup for simulating frequency spectra under the
two main models that were tested. The two models were: 1) a
single-population model experiencing a bottleneck of varying
size [0:1NA; 0:25NA; 0:5NA] followed by exponential growth
over different time scales [0:2NA; 0:4NA; 0:6NA] back to the
original size and 2) a two-population model where a small
subpopulation diverges from the main population at different
times in the past [0:2NA; 0:4NA; 0:6NA], going through a
bottleneck of different sizes [0:1NA; 0:25NA; 0:5NA] and re-
ceiving migrants from the main population at different rates
[0:25=NA; 0:5=NA; 0:75=NA]. For the Coestimating
Inbreeding and Demography simulations, we generated SFS
under a standard neutral model with inbreeding as well. We
also used a larger range of inbreeding coefficients for this
experiment (FIS¼0.1, 0.25, 0.5, 0.75, and 0.9). The remaining
three simulations that were not focused on estimating in-
breeding used a smaller range (FIS¼0.1, 0.2, 0.3, 0.4, and 0.5)
since optimizations at higher inbreeding levels generally failed
to converge. Each simulation experiment was replicated 20
times, with each replicate having 25 individuals sampled per
population and running 50 independent optimizations. Site
frequency spectra were generated for each replicate by first
getting the expected SFS for the model with the true param-
eters, followed by scaling the SFS using h ¼ 10; 000 and sam-
pling chromosomes assuming a Poisson distribution
(sample() method in the Spectrum class within @a@i).
Parameter estimates with the highest log-likelihood were se-
lected from the 50 optimization runs for each replicate.

We evaluated parameter estimates for each experiment
(including estimates with SLiM above) by comparing the
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estimated values with the true parameters by calculating the
RMSD in R v3.6.1 using the tidyverse package v1.2.1 (R Core
Team 2019; Wickham et al. 2019). Plots from R were gener-
ated using ggplot2 v3.2.1 (Wickham 2009). Plots from Python
were made using matplotlib v3.1.1 (Hunter 2007) or plotting
functions within the @a@i library.

Empirical Examples
American Puma
Genome-wide variant data from Ochoa et al. (2019) were
obtained from the authors for five Texas pumas and two
Florida panthers in VCF. SNPs within annotated genes were
removed using bedtools v2.28.0 (Quinlan and Hall 2010),
followed by processing with VCFtools v0.1.16 (Danecek
et al. 2011) to retain only biallelic SNPs with no missing
data. The final data set contained 6,262,417 sites, which we
converted from VCF format into @a@i’s “SNP data format”
using a Python script (available on GitHub) for demographic
analysis. We then estimated demographic parameters in @a@i
using 100 independent optimization runs from different ran-
dom starting points (Gutenkunst et al. 2009). Parameters
were converted from estimated ratios of the ancestral popu-
lation size (NA) to real units using a mutation rate of
l ¼ 2:2� 10�9, a generation time of 3 years, and a sequence
length of 2,564,692,624 bp (Ochoa et al. 2019). CIs were esti-
mated using the Godambe information matrix with 100
bootstrapped frequency spectra that were constructed by
randomly sampling genome scaffolds with replacement until
we reached the same number of scaffolds as the original full
genome (Coffman et al. 2016). The Godambe information
matrix uses numerical differentiation to estimate uncertainty
and requires a step size (�) to be chosen. The choice of step
size should be roughly proportional to the size of the uncer-
tainty that is being estimated. To evaluate which step size was
most appropriate for American pumas, we used the boot-
strapped spectra to estimate uncertainties across a range of
step sizes: (10�2–10�7 by factors of 10). These bootstrapped
frequency spectra were also used to conduct a likelihood ratio
test between the models with and without inbreeding using
the LRT_adjust() method in @a@i and comparing the test
statistic to a weighted sum of v2 distributions with zero, one,
and two degrees of freedom (Ota et al. 2000):
1
4 v2

0 þ 1
2 v2

1 þ 1
4 v2

2. This weighted sum is used because we
are testing whether the inbreeding coefficients for the
Texas and Florida populations are equal to 0, which is the
lower boundary of their parameter space since we are assum-
ing inbreeding coefficients cannot be negative. Because of
this, the typical normality assumptions used in the construc-
tion of the likelihood ratio test do not apply and we must
adjust the distribution being used for assessing the signifi-
cance of the likelihood ratio test statistic (Ota et al. 2000).

Domesticated Cabbage
We obtained a VCF file containing SNP calls for 45 cabbage
individuals from resequencing data in Cheng, Sun, et al.
(2016) and Cheng, Wu, et al. (2016). We then filtered out
genic SNPs with bedtools v2.28.0 using gene annotations

from http://www.genoscope.cns.fr/externe/plants/chromo
somes.html (last accessed February 26, 2020; Belser et al.
2018). Biallelic SNPs containing no missing data were
extracted with VCFtools v0.1.16 for a final data set with
2,941,018 variable sites. Demographic parameters were esti-
mated in @a@i with the BOBYQA algorithm implemented in
the nlopt Python package using 100 independent optimiza-
tion runs from random starting points (Gutenkunst et al.
2009; Powell 2009; Johnson 2014). Parameters were converted
from estimated ratios of the ancestral population size to real
units using a mutation rate of l ¼ 1:5� 10�8, a generation
time of 1 year, and a sequence length of 411,560,319 bp (chro-
mosomes minus genic regions). CIs were then estimated us-
ing the Godambe information matrix with 100 bootstrapped
frequency spectra that were constructed by randomly sam-
pling 1-Mb blocks with replacement until the total sequence
length was as close as possible to the size of the full genome
(528,860,695 bp; Coffman et al. 2016). We also repeated the
same procedure described earlier for choosing a step size for
numerical differentiation (� 2 ½10�2; . . . ; 10�7� by factors of
10). These bootstrapped frequency spectra were again used
to conduct a likelihood ratio test between the models with
and without inbreeding using the LRT_adjust() method in
@a@i and comparing the test statistic to a weighted sum of v2

distributions with zero and one degrees of freedom (see sec-
tion above for rationale; Ota et al. 2000): 1

2 v2
0 þ 1

2 v2
1.

Confidence Intervals for Composite Parameters
We used the constants listed above for sequence length (L),
mutation rate (l), and generation time (g) for pumas and
domesticated cabbage to convert from the units used by
@a@i to real units of years and individuals. However, in order
to estimate CIs for these converted parameters, we need to
correctly account for the fact that times and population sizes
are products of two estimated parameters (either h� T@a@i

or h� N@a@i): Treal ¼ 2g
4Ll hT@a@i and Nreal ¼ 1

4Ll hN@a@i. We
do this by propagating the uncertainty in our estimates of
each individual parameter into a combined estimate of the
SD for the composite parameter. In addition, because our
original uncertainty estimates for each parameter were large
and led to negative values in our CIs, we instead estimated
our uncertainty on a log scale. Taking the log of Treal and Nreal

gives us the following expressions for each parameter:

log Treal ¼ log
2g

4Ll

� �
þ log hþ log T@a@i ;

log Nreal ¼ log
1

4Ll

� �
þ log hþ log N@a@i :

The corresponding expressions for the SDs of log Treal and
log Nreal are then,

r log Treal
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

log h þ r2
log T@a@i

þ 2r log h; log T@a@i

q
;

r log Nreal
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

log h þ r2
log N@a@i

þ 2r log h; log N@a@i

q
;

where r2
x ; r2

y , and rx;y are the variances and covariance for
arbitrary variables x and y. With these new estimates of the
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SD, we can obtain the log-scaled CIs for Treal and Nreal:
log Treal6Cr log Treal

and log Nreal6Cr log Nreal
. Here, C is a con-

stant chosen based on the desired confidence level (e.g.,
C¼ 1.96 for 95% CI). Exponentiating these expressions then
gives us our confidence limits on the original scale.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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