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Abstract 

Recombination is a key part of evolutionary theory, and understanding the ways selection 

can bias inferred rates in a population can help us investigate better models for inference. 

This experiment models the bias in recombination rate inferences on a simulated genome 

with selection. Using SLiM forward genetic simulation, this experiment creates two basic 

genomic structures, one with and one without a hotspot. Then, using Pyrho a fine-scaled 

linkage disequilibrium-based inference model, the experiments reveal how selection 

biases the linkage disequilibrium model. Notably, with increasing nonsynonymous 

distribution of fitness effects (DFE), the inferences worsen and show a decreasing trend. 

This is most notable in the hotspot region of the second genomic structure (with a 

hotspot). The results show that the assumption of neutral selection in popular population-

based inference methods is extremely important and should be addressed. In particular, 

among organisms with less compact genomes, the issue of selection would become more 

extreme and disruptive. In future models, this could be taken into consideration to 

improve inference ability among a diverse set of organisms with different levels of 

selection in their genome. Understanding how recombination rates differ across the tree 

of life can also reveal interesting molecular structures which further motivates accuracy 

in these inference methods. 

 

 



Introduction 

Recombination in evolutionary biology 

Recombination is a pivotal step in ensuring proper replication during sexual reproduction 

of eukaryotic organisms. During the first stage of meiosis, parental chromosomes will 

form a chiasma and crossover. This process, also known as meiotic recombination, 

increases genetic diversity within the population by allowing genetic information from 

two parents to be shuffled into a single chromosome. Meiotic recombination also ensures 

the fidelity of chromosome pairing during meiosis. Recombination is one of five central 

parameters considered by evolutionary theory along with mutation, selection, genetic 

drift, migration, and recombination. However, the molecular machinery of recombination 

has only been partially elucidated with the discovery of PRDM9 (1) and remains a 

mystery.  

 

As a part of the genetic architecture, recombination cannot be disregarded as noise in the 

context of evolution (2) as they were in older models. The additive unconstrained gene 

action model, for instance, considers large, panmictic, recombining populations that 

allow all combinations of alleles (3). Thus, the model concludes that the evolutionary 

effect of an allele could be defined by taking the average of all genotype combinations. 

This classical model assumes that the underlying genetic interactions could be averaged 

and treated like statistical noise. However, empirical data show that various aspects of 

https://www.nature.com/articles/ng1010-821
https://www.annualreviews.org/doi/10.1146/annurev.ecolsys.37.091305.110224
https://www.nature.com/articles/126595a0


genetic architecture (epistasis, pleiotropy, cryptic variations, etc.) systematically 

influence evolutionary dynamics, and newer models seek to understand the effect of these 

molecular mechanisms (2).  

 

For example, Fisher–Muller model proposes that recombination facilitates adaptation by 

allowing beneficial mutations to arise among different lineages and reducing clonal 

interference. This theory has been tested in Escherichia coli where a beneficial mutation 

was shown to fix at a faster rate when an F plasmid was inserted to mediate 

recombination (4). In the absence of the F plasmid, the beneficial mutation conferred a 

reduced competitive advantage and fixed at a slower rate, indicating interference between 

competing beneficial mutations. These results indicate that recombination can drive 

evolution by decoupling genes to allow adaptation to occur faster. 

Meiotic recombination aids in speciation by evolving maladaptive gene exchange to 

favor reproductive isolation even when gene flow is present. Both suppression of 

recombination through chromosomal rearrangement meiosis in hybrids and genic 

modifiers can lead to the reduction of recombination rates and contribute to speciation.  

 

Linkage disequilibrium measures genetic difference within a population by determining 

the non-random association of alleles at different loci. Strong linkage disequilibrium 

refers to one population having a large proportion of one genotype (e.g. AB) while the 

https://www.annualreviews.org/doi/10.1146/annurev.ecolsys.37.091305.110224
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050225


other population primarily retains the other genotype (e.g. ab While chromosomal 

rearrangements do not change linkage relationships, genic modifiers can affect linkage by 

hitchhiking with other genes to spread and change recombination rates across the 

genome. They can create recombination hotspots by binding to chromosomal regions and 

increasing the chance of double strand breaks (DSBs) (5). 

 

Discussions over the paradox of sex also reveal with mathematical modeling that 

recombination contributes to the evolutionary advantages of sexual reproduction under 

certain restrictions (6). Despite the cost of sexual reproduction (two-fold cost, parasites, 

sexually transmitted disease), the maintenance and regularity of sexual reproduction 

remain. Recombination lies at the heart of sexual reproduction and evolutionary biology. 

Substantial genetic variation in recombination rates and patterns (among chromosomes, 

between sexes, among individuals, populations, and species) indicate a complex 

mechanism driving speciation (7).  

 

Recombination Inference and the Linkage Disequilibrium Model 

There are two major categories for estimating the recombination landscape: cytological 

and genomic-based methods. Cytological methods directly visualize different stages of 

the recombination process and count events. While cytological methods provide a coarse 

resolution of recombination landscape, these methods use direct visualization to help 

https://royalsocietypublishing.org/doi/10.1098/rspb.2016.1243?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://www.nature.com/articles/nrg761
https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-294X.2005.02617.x


uncover mechanisms underlying recombination. For instance, comparing DSBs and 

resulting crossover events can suggest meiotic regulators of crossover frequencies (8,9).  

 

Genomic-based methods, on the other hand, indirectly infer crossover events to estimate 

the recombination landscape. These methods fall into three broad categories of gamete-

based, pedigree-based, and population-based methods (10) where each method estimates 

a different aspect of the recombination landscape. The gamete-based method measures 

the frequencies of crossovers for an individual using (often male) haploid gametes. The 

gamete-based method is powerful because it provides high resolution crossover 

frequency data from low sampling and allows comparisons between individuals. 

However, because this method infers on haploid gametes, the recombination maps are 

sex-specific, biased by individual SNP density, and temporally limited as a snapshot.  

 

Alternatively, the classical pedigree-based method estimates a genetic linkage map from 

patterns of inheritance for alleles within a family tree. This method produces sex-specific 

recombination maps and inferences unbiased by population level processes due to the 

scope of the method. However, this method is more involved because of the larger 

sample size and complex study design to map out a pedigree. Furthermore, results are 

low resolution (~1 Mb, 0.5-2 cM) and temporally limited to a snapshot in time like the 

gamete-based method (10). 

https://academic.oup.com/genetics/article/132/1/135/6009146?login=false
https://pubmed.ncbi.nlm.nih.gov/24376867/
https://www.nature.com/articles/s41576-020-0240-1
https://www.nature.com/articles/s41576-020-0240-1


Finally, the population-based method is used to infer population recombination rate using 

linkage disequilibrium and is also referred to as the linkage disequilibrium model (10). 

Within this schema, the population is assumed to contain N diploid, randomly mating 

individuals, where each locus mutates at a rate 𝜇𝜇 under the infinite sites model. The 

infinite sites model considers mutable sites to be continuous along the genome so that 

there are an infinite number of sites where new mutations can occur. The distribution of 

linkage disequilibrium describes the probabilities of various samples of gametes (11). 

The population-based method infers a moderate to high resolution recombination 

landscape and is not restricted to a snapshot in time.   

 

Recombination rates can vary on both a small scale and a large scale. One of the most 

well-known drivers of small-scale recombination rate evolution is PRDM9. PRDM9 has 

been highly studied as a driving factor of chromatin remodeling and recombination 

hotspot evolution but only explains a small portion of recombination rate evolution. For 

instance, while there are various PRDM9 alleles and diverse binding sites, PRDM9 

activity cannot explain the fine-scale recombination rate differences among closely 

related populations with different demographic histories. Furthermore, the predominant 

PRDM9 allele in non-African populations has a weak erosion on binding sites (12). 

Uncovering more driving forces would help provide a better understanding of the 

underlying mechanisms behind recombination rate evolution. Large-scale changes in 

https://www.nature.com/articles/s41576-020-0240-1
https://academic.oup.com/genetics/article/108/1/257/6097491?login=false
https://www.science.org/doi/epdf/10.1126/sciadv.aaw9206


linkage can occur via chromosomal rearrangements such as translocations and inversions 

(5) and greatly impact the recombination landscape. 

 

Linkage Disequilibrium Model 

Various methods of the population-based approach can infer recombination events. For 

example, the four-gamete test is best for determining the lower bound of recombination 

events (13). The test infers recombination events between pairs of loci in diploids such 

that four possible gametic combinations exist. The Rm used to infer the number of 

recombination events is determined by combining the events within nonoverlapping 

intervals under conservative assumptions. Thus, the four-gamete method is very fast to 

compute but often overlooks recombination events and underestimates recombination 

rates (14).  

More complex methods use a mathematical model known as the coalescent to recreate 

the underlying gene genealogies and then estimate the population recombination rate. 

Ancestral recombination graphs (ARGs) describe the underlying population history and 

contain mutation and recombination events (15). 

 

Assumptions of the Linkage Disequilibrium Model 

Bias in the estimates of population recombination rate can occur if the model 

assumptions are not met as linkage disequilibrium becomes distorted. The model 

https://royalsocietypublishing.org/doi/10.1098/rspb.2016.1243?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://academic.oup.com/genetics/article/111/1/147/5996759?login=false
https://www.researchgate.net/publication/10899819_Myers_S_R_Griffiths_R_C_Bounds_on_the_minimum_number_of_recombination_events_in_a_sample_history_Genetics_163_375-394
https://www.frontiersin.org/articles/10.3389/fgene.2013.00206/full


assumptions relate to constant population size, random mating in the absence of 

population structure and migration, genetic drift, mutation rate, and selective neutrality 

(10). Gene flow, for instance, tends to lead to overestimations of population 

recombination rate (16).  

 

Researchers are beginning to address some of these simplifying assumptions, and new 

methods are being created to ameliorate them. For example, LDpop addresses the 

assumption of constant population size to allow variable population sizes that are 

piecewise constant (17).  

 

Similarly, Pyrho is a penalty composite likelihood (fused-LASSO approach) method that 

is demography-aware (12). Pyrho can account for nonequilibrium demographic histories 

unlike other methods such as LDhat which cannot discriminate between different 

populations. Pyrho inferences on 26 different human populations noted a high correlation 

of fine scale recombination maps for each population with their demographic history 

(12). This suggests that fine-scale recombination rates are highly polygenic.  

 

By comparing across the tree of life in a systematic manner, recombination rates 

differences can reflect underlying mechanisms that drive the evolution of recombination 

rates and speciation. However, one of the important assumptions that could be violated 

https://www.nature.com/articles/s41576-020-0240-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635666/
https://academic.oup.com/genetics/article/203/3/1381/6065801
https://www.science.org/doi/epdf/10.1126/sciadv.aaw9206
https://www.science.org/doi/epdf/10.1126/sciadv.aaw9206


during this process is the assumption of selective neutrality. Although selection in human 

genomes is largely neutral (coding sequences make up ~1.1% of the genome) (18), other 

organisms such as Mus musculus and Drosophila melanogaster have more compact 

genomes with higher proportions of coding regions (19). To investigate and compare 

different organisms in the tree of life, the assumption of selective neutrality must be 

investigated further. 

 

Methods 

SLiM 3 – Forward Genetic Simulation (20) 

SLiM 3 is a powerful evolutionary simulation package that is based on the Wright-Fisher 

model of evolution. In this experiment, we use the default Wright-Fisher model to 

generate VCF files from a population of 10,000 diploid individuals. The genome length 

for the population is 2Mb, and the VCF files are sampled from 25 individuals in the 

population after 200,000 generations. The mutation rate is set to 1.133e-8 (21) as 

inferenced from an Icelandic population, and the baseline recombination rate (not 

hotspots) is 1e-8 (22). Each experiment is repeated 10 times (n = 10) to determine trends. 

 

Pyrho - Fine-Scale Recombination Inference (12) 

Pyrho is a fast demography-aware inference method for fine scale recombination rates 

which uses penalized composite likelihood inference (fused-LASSO). Pyrho creates a 

https://kirschner.med.harvard.edu/files/bionumbers/Human%20genome%20and%20human%20gene%20statistics.pdf
https://www.nature.com/scitable/topicpage/eukaryotic-genome-complexity-437/
https://academic.oup.com/mbe/article/36/3/632/5229931
https://pubmed.ncbi.nlm.nih.gov/28959963/
https://pubmed.ncbi.nlm.nih.gov/18067567/
https://www.science.org/doi/epdf/10.1126/sciadv.aaw9206


lookup table from the population size, sample size, and the mutation rate to increase the 

efficiency of the optimization step. The hyperparameters best for this experiment were a 

window size of 50 and a block size of 50. Pyrho uses this information along with the 

VCF file from SLiM’s output to infer the recombination maps for each VCF file. The 

output is an RMAP file which maps out the recombination rates across the genome. 

 

Experimental Constructs (SLiM) 

To systematically investigate the effect of selection on inferred recombination rates, the 

first experiment uses a simple uniform model containing a single genomic element 

containing neither intron-exon structures nor hotspots. The proportion of selection in the 

genome in this first experiment are 0% (neutral), 20%, 40%, 60%, 80%, and 100%. The 

proportion of selection in this first construct is represented by the proportion of 

nonsynonymous mutations in the genome and are randomly assigned across the genome 

with a uniform distribution. The parameters for the nonsynonymous distribution of fitness 

effects (DFE) come from a population of Yoruban Nigerians (Table 1) (23).  

 

The second construct builds upon the first construct by adding hotspots. Since Pyrho 

infers fine-scale recombination maps, this construct contains a 100kb recombination 

hotspot at between base pairs 1,900,000 the final 2,000,00,000 base pair. The proportion 

of selection in the genome in this first experiment are 0% (neutral), 20%, 40%, 60%, 

https://academic.oup.com/genetics/article/213/3/953/5930587


80%, and 100%. The proportion of selection in the second construct is also represented 

by the proportion of nonsynonymous mutations in the genome and are randomly assigned 

across the genome with a uniform distribution. 

 

Data Processing – RMAP Visualization 

To visualize the RMAP files, the raw data was processed and displayed on a plot using 

matplotlib in Python 3.10.10. The true recombination landscape is displayed in red 

(linewidth = 3) alongside the experimental recombination landscape inferences. 

 

Data Processing – Bias and Variation 

To model the accuracy of recombination inferences, the average bias across the genome 

is measured for each RMAP. Boxplots are used to observe changes in recombination 

inference accuracy over a range of selection levels (0-100%). For the genome structures 

with hotspots, the bias is calculated for each segment with a single recombination rate 

and then summed over all segments.  

The variation of recombination rates across the genome is quantified using the standard 

deviation: 

𝜎𝜎 =  �∫ (𝑥𝑥 − 𝜇𝜇)2+∞
−∞ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥  



where x is the inferred recombination rate, 𝜇𝜇 is the mean inferred recombination rate, and 

f(x) is the proportion of the inferred genome represented by that recombination rate. All 

plots for bias and variation metrics are plotted in Rstudio using ggplot2. 

 

Other Resources 

All scripts are run on the High Performance Computing Systems at the University of 

Arizona. Batch scripts are run using slurm workload manager. SLiM and Pyrho are 

installed and compiled using Miniconda3. 

 

Results 

Recombination Landscape of Uniform Genome with No Hotspots 
 

 



 

 
Figure 1: Visualizing the recombination landscape for uniform genome structures with no 
hotspots. As the portion of nonsynonymous distribution of fitness effects (DFEs) 
increases, the inference becomes poor.  
 



 
Figure 2: Summarizing the n = 10 recombination landscapes for each percentage 
nonsynonymous DFE into boxplots. Left: mean inferred recombination rate per base pair. 
Right: sample standard deviation. 
 
As the percentage of nonsynonymous distribution of fitness effects increases in the 

genome, the recombination rate inferences noticeably worsened. Fig. 1 reveals poor 

inferences as soon as the percentage goes up to 20%, and there appears to be a decrease 

in the inferred value as the percentages increase (Fig. 2). 

Recombination Landscape of Uniform Genome with Hotspots 
 

 



 
Figure 3: Visualizing the recombination landscape for uniform genome structures with 
hotspots. 
 

 
Figure 4: Summarizing the n = 10 recombination landscapes for each percentage 
nonsynonymous DFE into boxplots. Left: mean inferred recombination rate per base pair. 



Right: sample standard deviation. The genomic region with recombination rate 1e-8 and 
the hotspot region with recombination 1e-7 are considered separately. 
 

In this structure, a 100kb hotspot is present at the end of the 2Mb genome. A similar 

trend is seen in the previous experiment where increasing percent nonsynonymous DFE 

produces poor estimates (Fig. 3). The estimated values seem to show a decreasing trend 

as the percentage of nonsynonymous DFE increases. There is also a higher variation and 

a more extreme decreasing trend in estimated values within the hotspot region (Fig. 4). 

 

Conclusion 

When selection becomes a stronger influence in the evolutionary dynamic, recombination 

rate inferences become heavily affected. Modern methods of population-based inference 

assume constant population size, random mating in the absence of population structure 

and migration, genetic drift, mutation rate, and selective neutrality. Strides have been 

made to address these assumptions such as with LDpop which allows for various 

population sizes. By addressing the bias resulting from the model, researchers can further 

discover new genetic mechanisms of recombination rate and develop a better 

understanding of evolution. 
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